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Definition

A function f : Rn → R is convex if its domain domf is convex and if for all
x , y ∈ domf , and 0 ≤ λ ≤ 1, we have

f ((1− λ)x + λy) ≤ (1− λ)f (x) + λf (y).

Strictly convex if strict inequality holds whenever x 6= y and 0 < λ < 1.

We say f is concave if −f is convex, and affine if both convex and
concave.
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“One-dimensionality” of convexity

From definition, a function f is convex iff its restriction to any line is
convex: for any x , y ∈ domf , g(λ) := f (x + λ(y − x)) is convex over
{λ|x + λ(y − x) ∈ domf }
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Extended-value extensions

If f is convex we define its extended-value extension,

f̃ (x) =

{
f (x) x ∈ domf
∞ x /∈ domf

With the extended reals, this can simplify notation, since we do not need to
explicitly describe the domain.

Example

For a convex set C , its indicator function IC is defined to be IC (x) = 0 for
all x ∈ C . Then its extension is

ĨC (x) =

{
0 x ∈ C
∞ x /∈ C

.

Suppose domf = Rn. Then, min{f (x) : x ∈ C} is equivalent to minimizing
f + ĨC .
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First-order conditions

Theorem

Suppose f : Rn → R is differentiable. Then f is convex iff domf is convex and

f (y) ≥ f (x) +∇f (x)T (y − x) ∀x , y ∈ domf .

Proof Case 1: n = 1.
“Only if” Assume f is convex and x , y ∈ domf with x 6= y . Since domf is
convex, we have for all 0 < λ ≤ 1, x + λ(y − x) ∈ domf , and by convexity of
f , f (x + λ(y − x)) ≤ (1− λ)f (x)+λf (y).
Dividing both sides by λ, we obtain

f (y) ≥ f (x) +
f (x + λ(y − x))− f (x)

λ
.

Taking limit as λ → 0, we get f (y) ≥ f (x) + f ′(x)(y − x).
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First-order conditions (cont’d)

“If” Choose any x , y ∈ domf and 0 ≤ λ ≤ 1, and let z = λx + (1− λ)y .
Then, by the above,

f (x) ≥ f (z) + f ′(z)(x − z), f (y) ≥ f (z) + f ′(z)(y − z).

Multiplying the first inequality by λ, the second by 1− λ, and adding them
yields

λf (x) + (1− λ)f (y) ≥ f (z) = f (λx + (1− λ)y).

Case 2: n ≥ 2. Let x , y ∈ domf . Consider restriction of f to line through x

and y : g(λ) := f (x + λ(y − x)), and apply the above case.
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Second-order conditions (cont’d)

Proposition

Assume f is twice differentiable on domf which is open. Then f is convex if
and only if domf is convex and its Hessian is positive semidefinite: ∀x ∈ domf ,

∇2f (x) � 0.

Remark that

for y ∈ domf and z ∈ Rn, define g(λ) := f (y + λz). Then
g ′′(λ) = zT∇2f (y + λz)z . Thus, g ′′(λ) ≥ 0 on {λ|y + λz ∈ domf } if
and only if ∇2f (x) � 0 ∀x ∈ domf .
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Second-order conditions (cont’d)

Proof Case 1 f : R → R
“Only if” If f is convex, then f (y) ≥ f (x) + f ′(x)(y − x) for all x , y ∈ domf ,
where x < y . Thus,

f (y)− f (x)

y − x
≥ f ′(x).

Taking limit as x → y , we get f ′(y) ≥ f ′(x), which implies that f ′ is monotone
nondecreasing. Hence, f ′′(x) ≥ 0,∀x ∈ domf .
“If” For all x , y ∈ domf , there exists z ∈ domf satisfying

f (y) = f (x) + f ′(x)(y − x) +
1

2
f ′′(z)(y − x)2 ≥ f (x) + f ′(x)(y − x).

The second inequality follows from the hypothesis. Hence f is convex.
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Second-order conditions (cont’d)

Case 2 f : Rn → R
f is convex if and only if g(λ) = f (x + λy) is convex on {λ|x + λy ∈ domf },
∀x ∈ domf and y . Then, by Case 1, the latter holds if and only if g ′′(λ) ≥ 0
on {λ|x + λy ∈ domf }:

g ′′(λ) =
d

dλ
g ′(t) =

d

dλ

( n∑
i=1

f ′i (x + λy)yi

)

=
n∑

i=1

yi
d

dλ
fi (x + λy) =

n∑
i=1

yi∇2f (x + λy)i·y

= yT∇2f (x + λy)y ≥ 0,

where ∇2f (x)i· is the i-th row of ∇2f (x). Therefore, ∇2f (x) � 0 for all

x ∈ domf .
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Some simple examples

Example

Exponential eax is convex on R for a ∈ R.

Powers xa are convex on R++ for a ≥ 1 or a ≤ 0, and concave for
0 ≤ a ≤ 1.

Powers of absolute value, |x |p for p ≥ 1, is convex on R.

Logarithm log x is convex on R++.

Negative entropy x log x is convex on R++. (Also on R+ if
defined as 0 for x = 0.)
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Max function

Max function, f (x) = max{x1, . . . , xn} is convex on Rn.

Proof

f (λx + (1− λ)y) = max
i
{λxi + (1− λ)yi}

≤ λ max
i

xi + (1− λ) max
i

yi

= λf (x) + (1− λ)f (y).
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Log-sum-exp

Log-sum-exp function f (x) = log(ex1 + · · ·+ exn) is convex on Rn.

Proof The Hessian of the log-sum-exp function is

∇2f (x) =
1

(1T z)2
(
(1T z)Diag(z)− zzT

)
,

where z = (ex1 , . . . , exn). We must show that for all v , vT∇2f (x)v ≥ 0,
but

vT∇2f (x)v =
1

(1T z)2

(( n∑
i=1

zi

)( n∑
i=1

v2
i zi

)
−

( n∑
i=1

vizi

)2
)
≥ 0.

The inequality follows from the Cauchy-Schwarz inequality (aTa)(bTb) ≥
(aTb)2 applied to ai =

√
zi and bi = vi

√
zi .
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Sublevel sets and graphs

Definition

The α-sublevel set of a function f : Rn → R is

Cα = {x ∈ domf |f (x) ≤ α}.

Sublevel sets of a convex function are convex. (Converse is false.)

Definition

The graph of a function f : Rn → R is {(x , f (x))|x ∈ domf }.
The epigraph of f is epif = {(x , t)|x ∈ domf , f (x) ≤ t}.
The hypograph of f is hypf = {(x , t)|x ∈ domf , f (x) ≥ t}.

A function is convex (concave) if and only if its epigraph (hypograph, resp.) is

convex.
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Epigraph and convex function

Consider the first-order condition for convexity: ∀ x , y ∈ domf , f (y) ≥
f (x) +∇f (x)T (y − x). Thus, if (y , t) ∈ epif , then t ≥ f (y) ≥ f (x) +
∇f (x)T (y − x). Hence ∇f (x)T (y − x) − (t − f (x)) ≤ 0. Thus,

(x , t) ∈ epif ⇒
[
∇f (x)
−1

]T ( [
y
t

]
−

[
x

f (x)

] )
≤ 0,

which means hyperplane in Rn+1 defined by (∇f (x),−1) supports epif

at the boundary point (x , f (x)).
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Nonnegative scaling preserves convexity.
Proof If w ≥ 0 and f is convex, we have

epi(wf ) =

[
I 0
0 w

]
epif ,

which is convex because the image of a convex set under a linear
mapping is convex.

If f1, . . . , fm are convex functions, then ∀ wi ≥ 0, i = 1, . . ., m,

f = w1f1 + · · ·+ wmfm is convex.
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Suppose f : Rn → R, A ∈ Rn×m, and b ∈ Rn. Define g : Rm → R by

g(x) = f (Ax + b), with domg = {x |Ax + b ∈ domf }.

Then, if f is convex, so is g ; if f is concave, so is g .
Proof Suppose (x , s)T , (y , t)T ∈ epig satisfy f (Ax + b) ≤ s and
f (Ay + b) ≤ t. Then,

f
(
A

(
(1− λ)x + λy

)
+ b

)
= f

(
(1− λ)(Ax + b) + λ(Ay + b))

)
≤ (1− λ)f (Ax + b) + λf (Ay + b) ≤ (1− λ)s + λt.

Thus (1− λ)(x , s)T + λ(y , t)T ∈ epig .
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If f1 and f2 are convex functions, then so is their pointwise maximum,

f (x) = max{f1(x), f2(x)} with domf = domf1 ∩ domf2.

Proof 0 ≤ λ ≤ 1 and x , y ∈ domf ,

f (λx + (1− λ)y) = max{f1(λx + (1− λ)y), f2(λx + (1− λ)y)}
≤ max{λf1(x) + (1− λ)f1(y), λf2(x) + (1− λ)f2(y)}
≤ max{λf1(x), λf2(x)}+ max{(1− λ)f1(y), (1− λ)f2(y)}
= λ max{f1(x), f2(x)}+ (1− λ)max{f1(y), f2(y)}
= λf (x) + (1− λ)f (y).

Or, easy to see epif = epif1 ∩ epif2.
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If for each y ∈ A, f (x , y) is convex in x , then the function g , defined as

g(x) = sup
y∈A

f (x , y),

is convex in x . (domg = {x | (x , y) ∈ domf ∀y ∈ A, supy∈A f (x , y) < ∞})

Application

Support function of a set, SC (x) = sup{xT y |y ∈ C} is convex.

Distance to farthest point of a set, f (x) = supy∈C ‖x − y‖ is convex.

Least-squares as function of weights g(w) = infx

∑n
i=1 wi (a

T
i x − bi )

2

with domg = {w | infx

∑n
i=1 wi (a

T
i x − bi )

2 > −∞}. Needs proof.

Max eigenvalue of symm matrices f (X ) = sup{yTXy | ‖y‖2 = 1}.
Norm of a matrix
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Convex as pointwise affine supremum

If f : Rn → R is convex, with domf = Rn, then we have

f (x) = sup{g(x)|g affine, g(z) ≤ f (z) for all z}.

Proof (≥) Easy.
(≤) For any x we can find a supporting hyperplane of epif at (x , f (x)):
a ∈ Rn and b ∈ R with (a, b) 6= 0 such that ∀ (z , t) ∈ epif ,[

a
b

]T [
x − z

f (x)− t

]
≤ 0. Or, aT (x − z) + b(f (x)− f (z)− s) ≤ 0,

for all z ∈ domf = Rn and all s ≥ 0. This implies b > 0 as easily seen.
Therefore,

g(z) = f (x) + (a/b)T (x − z) ≤ f (z)

for all z . The function g is an affine underestimator of f and satisfies

g(x) = f (x).
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Chain rule: Review

Consider a twice differentiable f : Rn → Rm whose domf is assumed to
be open for simplicity.

For m = 1, the derivative Df : Rn → R of f at x is defined to be

Df (x) =
[

D1f (x) · · ·Dnf (x)
]
.

A linear transformation from Rn to R which linearly approximates f
at x .

For m ≥ 2, the derivative of f at x is defined to be

Df (x) =

 Df1(x)
...

Dfm(x)

 .

A linear transformation from Rn to Rm which linearly approximates
f at x .
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Chain rule: Review(cont’d)

For m = 1, we define the gradient of f is a column-wise
representation of its derivative:

∇f (x) =

 D1f (x)
...

Dnf (x)

 ,

a function from Rn → Rn.

For m = 1, the Hessian ∇2f (x) of f is defined to be the derivative
of the gradient ∇f

∇2f (x) =

 D11f (x) · · · D1nf (x)
...

. . .
...

Dn1f (x) · · · Dnnf (x)

 .
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Chain rule: Review(cont’d)

Suppose that h : Rn → Rm is differentiable at x ∈ domh, and that g :
Rm → Rp is differentiable at h(x) ∈ domg . (Assume domains are open.)
Let f := g ◦ h : Rn → Rp by (g ◦ h)(x) = g(h(x)). Then, f is
differentiable at x and its derivative is

Df (x) = D(g ◦ h)(x) = Dg(h(x))Dh(x).

Optimization Lab. Convex functions A supplementary note to Chapter 3 of Convex Optimization by S. Boyd and L. Vandenberghe



Basic properties and examples
Operations that preserve convexity

Quasiconvex functions

Nonnegative weighted sums
Composition with an affine mapping
Pointwise maximum and supremum
Composition

Convexity conditions of composition

Let p = 1 and we consider case m = 1. For the convexity conditions of
composition, it suffices to consider one-dimensional cases: n = 1. Assume
g , h twice differ’ble, domg = domh = R. Then

f ′′(x) = g ′′(h(x))h′(x)2 + g ′(h(x))h′′(x).

g convex, nondecreasing, h convex ⇒ f convex,
g convex, nonincreasing, h concave ⇒ f convex,
g concave, nondecreasing, h concave ⇒ f concave,
g concave, nonincreasing, h convex ⇒ f concave.
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Composition(cont’d)

In general,

g convex, g̃ nondecreasing, h convex ⇒ f convex,
g convex, g̃ nonincreasing, h concave ⇒ f convex,
g concave, g̃ nondecreasing, h concave ⇒ f concave,
g concave, g̃ nonincreasing, h convex ⇒ f concave.

Example

g(x) = log(x), then g concave, g̃ nondecreasing

g(x) = x1/2, then g concave, g̃ nondecreasing

g(x) = x3/2, then g convex, g̃ not nondecreasing

g(x) = x3/2 for x ≥ 0, = 0 for x < 0 then g convex, g̃ nondecreasing.
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Composition(cont’d)

Proposition

g convex, g̃ nondecreasing, h convex ⇒ f convex.

Proof:

The monotonicity of g̃ is to guarantee convexity of h−1(domg). (Then domf

= domh ∩ h−1(domg) is convex.) Without it, h−1(domg) is not convex in

general: for instance h(x) = x2, g(x) = x with domain 1 ≤ x ≤ 2.
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Composition(cont’d)

Example

h convex ⇒ exp h convex.
h concave, positive ⇒ log h concave.
h concave, positive ⇒ 1/h(x) concave.
h convex, nonnegative, and p ≥ 1 ⇒ h(x)p convex.
h convex ⇒ − log(−h(x)) convex on {x |h(x) < 0}.
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Composition(cont’d)

Consider g : Rm → R and h : R → Rm with domg = Rm domh = R. Then can
derive similar conditions for convexity of g ◦ h for general m from

∇2f (x) = Dg(h(x))∇2h(x) + Dh(x)T∇2g(h(x))Dh(x).

(Here, we understand ∇2h is m × 1 matrix, [f ′′1 (x), . . . , f ′′m (x)]T .)

However, even without differentiability, we can observe the followings.

g convex, g̃ nondecreasing in each argument, hi convex ⇒ f convex,

g convex, g̃ nonincreasing in each argument, hi concave ⇒ f convex,

g concave, g̃ nondecreasing in each argument, hi concave ⇒ f concave.
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Composition(cont’d)

Example

g(z) = z[1] + · · ·+ z[r ], sum of r largest components of z ∈ Rm. Then g
is convex and nondecreasing in each zi . Therefore, if h1, . . ., hm convex
functions on Rn, f := g ◦ h is convex.

g(z) = log(
∑m

i=1 ezi ) is convex and nondecreasing in each zi . Hence if
hi are convex, so is g ◦ h.

For 0 < p ≤ 1, g(z) = (
∑m

i=1 zp
i )1/p is concave on Rm

+ and its extension
is nondecreasing in each zi . Hence if hi are concave and nonnegative
g ◦ h is concave.

For p ≥ 1, if hi are convex and nonnegative, (
∑m

i=1 hi (x)p)1/p is convex.

g(z) = (
∏m

i=1 zi )
1/m on Rm

+ is concave and its extension is
nondecreasing in each zi . If hi are nonnegative concave function, so is
(
∏m

i=1 hi )
1/m.
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Perspective of a function

If f : Rn → R, then the perspective of f is the function g : Rn+1 → R defined
by

g(x , t) = tf (x/t),

with domain
domg = {(x , t)|x/t ∈ domf , t > 0}

Proposition

If f is convex (concave, resp.), so is its perspective.

Proof:
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Perspective of a function(cont’d)

Example

g(x , t) = xT x
t

is convex on t > 0.

Example

Suppose f : Rn → R is convex, then is

g(x) = (cT x + d)f (Ax + b)/(cT x + d),

with domg = {x |cT x + d > 0, Ax + b)/(cT x + d) ∈ domf }.
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Definition

A function f : Rn → R is called quasiconvex if its domain and sublevel sets

Sα = {x ∈ domf |f (x) ≤ α}

are convex ∀ α ∈ R.

A function is quasiconcave if −f is quasiconvex.

A function that is both quasiconvex and quasiconcave is called quasilinear.

Figure: Quasiconcave and quasilinear function
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Examples

Logarithm log x is quasiconvex, quasiconcave, and hence quasilinear.

Ceiling ceil(x) = min{z ∈ Z|x ≥ z} is quasilinear.

Length of a vector x , max{i |xi 6= 0} is quasiconvex.

f (x1, x2) = x1x2 on R2
+ is quasiconcave.

f (x) = aT x+b
cT x+d

on {x |cT x + d > 0} is quasiconvex, quasiconcave and
hence quasilinear.

Distance ratio f (x) = ‖x−a‖2
‖x−b‖2

is quaisconvex on halfspace ‖x − a‖2 ≤
‖x − b‖2.
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Basic properties

Proposition

A function f is quasiconvex if and only if domf is convex and for any
x , y ∈ domf and 0 ≤ λ ≤ 1,

f (λx + (1− λ)y) ≤ max{f (x), f (y)}.

Proof
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Basic properties(cont’d)

f is quasiconvex iff its restriction on line is quasiconvex.

A continuous function f : R → R is quasiconvex iff one of the followings

holds:

f is nondecreasing,
f is nonincreasing, or
∃ c ∈ domf : f is nonincreasing on x ≤ c , and nondecreasing
on x ≥ c .
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First-order condition

Proposition

Suppose f : Rn → R is differentiable. Then f is quasiconvex if and only if
domf is convex and for all x , y ∈ domf

f (y) ≤ f (x) ⇒ ∇f (x)T (y − x) ≤ 0.

(Thus ∇f (x) defines supporting hyperplane of {y |f (y) ≤ f (x)}.)

Proof Case 1: f : R → R.
“If” Take any x , y ∈ domf (assumed open) and 0 < λ < 1. We need to show
that f

(
(1− λ)x + λy

)
≤ max{f (x), f (y)}. Assume f (x) ≥ f (y) and

f
(
(1− λ)x + λy

)
> f (x). Then there is x < z < y such that f (z) > f (x) and

f ′(z) > 0 and hence (z − x)f ′(z) > 0. A contradiction.
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Second-order condition

Supposer f is twice differentiable. If f is quasiconvex, then for all x ∈ domf ,
and all y ∈ Rn, we have

yT∇f (x) = 0 ⇒ yT∇2f (x)y ≥ 0

When ∇f (x) 6= 0, ∇2f (x) � 0 on ∇f (x)⊥, and hence may have at most 1 neg
eigenvalue. As a (partial) converse, f is quasiconvex if f satisfies

yT∇f (x) = 0 ⇒ yT∇2f (x)y > 0.
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Nonnegative weighted maximum
A nonnegative weighted maximum of quasiconvex functions

f = max{w1f1, . . . , wmfm}

with wi ≥ 0 and fi quasiconvex, is quasiconvex.

Composition

If g : Rn → R is quasiconvex and h : R → R is nondecreasing,
then f = h ◦ g is quasiconvex.
Composition of quasiconvex function with affine or
linear-fractional transform is quasiconvex: if f is quasiconvex,
so are f (Ax + b) and f ( Ax+b

cT x+d
) on {x |cT x + d > 0, Ax+b

cT x+d
∈

domf }.
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Minimization. If f (x , y) is quasiconvex jointly in x and y and C is a
convex set, then the function

g(x) = inf
y∈C

f (x , y)

is quasiconvex.
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Homework

3.1, 3.2, 3.3, 3.6, 3.7, 3.9, 3.17, 3.20, 3.22, 3.32, 3.43
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