Convex functions

A supplementary note to Chapter 3 of Convex Optimization by S. Boyd and L. Vandenberghe

Optimization Lab.

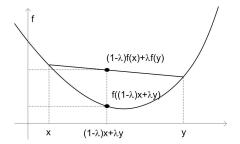
IE department Seoul National University

28th September 2009

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if its domain dom f is convex and if for all $x, y \in dom f$, and $0 \le \lambda \le 1$, we have

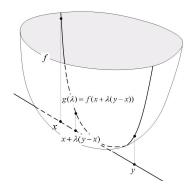
$$f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y).$$



- Strictly convex if strict inequality holds whenever $x \neq y$ and $0 < \lambda < 1$.
- We say f is concave if -f is convex, and affine if both convex and concave.

"One-dimensionality" of convexity

From definition, a function f is convex iff its restriction to any line is convex: for any $x, y \in \text{dom} f$, $g(\lambda) := f(x + \lambda(y - x))$ is convex over $\{\lambda | x + \lambda(y - x) \in \text{dom} f\}$



Extended-value extensions

If f is convex we define its extended-value extension,

$$\tilde{f}(x) = \begin{cases} f(x) & x \in \text{dom} f \\ \infty & x \notin \text{dom} f \end{cases}$$

With the extended reals, this can simplify notation, since we do not need to explicitly describe the domain.

Example

For a convex set C, its indicator function I_C is defined to be $I_C(x)=0$ for all $x\in C$. Then its extension is

$$\tilde{I}_C(x) =
\begin{cases}
0 & x \in C \\
\infty & x \notin C
\end{cases}.$$

Suppose dom $f = \mathbb{R}^n$. Then, $\min\{f(x) : x \in C\}$ is equivalent to minimizing $f + \tilde{I}_C$.

First-order conditions

Theorem

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable. Then f is convex iff domf is convex and

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) \ \forall x, y \in domf.$$

Proof Case 1: n = 1.

"Only if" Assume f is convex and $x,y\in \mathrm{dom} f$ with $x\neq y$. Since $\mathrm{dom} f$ is convex, we have for all $0<\lambda\leq 1$, $x+\lambda(y-x)\in \mathrm{dom} f$, and by convexity of f, $f(x+\lambda(y-x))\leq (1-\lambda)f(x)+\lambda f(y)$.

Dividing both sides by λ , we obtain

$$f(y) \ge f(x) + \frac{f(x + \lambda(y - x)) - f(x)}{\lambda}.$$

Taking limit as $\lambda \to 0$, we get $f(y) \ge f(x) + f'(x)(y - x)$.

First-order conditions (cont'd)

"If" Choose any x, $y \in \text{dom} f$ and $0 \le \lambda \le 1$, and let $z = \lambda x + (1 - \lambda)y$. Then, by the above,

$$f(x) \ge f(z) + f'(z)(x-z), \qquad f(y) \ge f(z) + f'(z)(y-z).$$

Multiplying the first inequality by λ , the second by $1-\lambda$, and adding them yields

$$\lambda f(x) + (1 - \lambda)f(y) \ge f(z) = f(\lambda x + (1 - \lambda)y).$$

Case 2: $n \ge 2$. Let $x, y \in \text{dom} f$. Consider restriction of f to line through x and y: $g(\lambda) := f(x + \lambda(y - x))$, and apply the above case. \square

Second-order conditions (cont'd)

Proposition

Assume f is twice differentiable on domf which is open. Then f is convex if and only if domf is convex and its Hessian is positive semidefinite: $\forall x \in domf$,

$$\nabla^2 f(x) \succeq 0.$$

Remark that

for $y \in \operatorname{dom} f$ and $z \in \mathbb{R}^n$, define $g(\lambda) := f(y + \lambda z)$. Then $g''(\lambda) = z^T \nabla^2 f(y + \lambda z)z$. Thus, $g''(\lambda) \ge 0$ on $\{\lambda | y + \lambda z \in \operatorname{dom} f\}$ if and only if $\nabla^2 f(x) \ge 0 \ \forall x \in \operatorname{dom} f$.

Second-order conditions (cont'd)

Proof Case 1 $f : \mathbb{R} \to \mathbb{R}$

"Only if" If f is convex, then $f(y) \ge f(x) + f'(x)(y - x)$ for all $x, y \in \text{dom} f$, where x < y. Thus,

$$\frac{f(y)-f(x)}{y-x}\geq f'(x).$$

Taking limit as $x \to y$, we get $f'(y) \ge f'(x)$, which implies that f' is monotone nondecreasing. Hence, $f''(x) \ge 0, \forall x \in \text{dom} f$.

"If" For all $x, y \in \text{dom} f$, there exists $z \in \text{dom} f$ satisfying

$$f(y) = f(x) + f'(x)(y - x) + \frac{1}{2}f''(z)(y - x)^{2} \ge f(x) + f'(x)(y - x).$$

The second inequality follows from the hypothesis. Hence f is convex.

Second-order conditions (cont'd)

Case 2 $f: \mathbb{R}^n \to \mathbb{R}$

f is convex if and only if $g(\lambda) = f(x + \lambda y)$ is convex on $\{\lambda | x + \lambda y \in \text{dom} f\}$, $\forall x \in \text{dom} f$ and y. Then, by **Case 1**, the latter holds if and only if $g''(\lambda) \geq 0$ on $\{\lambda | x + \lambda y \in \text{dom} f\}$:

$$g''(\lambda) = \frac{d}{d\lambda}g'(t) = \frac{d}{d\lambda}\left(\sum_{i=1}^{n} f_i'(x+\lambda y)y_i\right)$$
$$= \sum_{i=1}^{n} y_i \frac{d}{d\lambda}f_i(x+\lambda y) = \sum_{i=1}^{n} y_i \nabla^2 f(x+\lambda y)_{i.} y$$
$$= y^T \nabla^2 f(x+\lambda y) y \ge 0,$$

where $\nabla^2 f(x)_{i\cdot}$ is the *i*-th row of $\nabla^2 f(x)$. Therefore, $\nabla^2 f(x) \succeq 0$ for all $x \in \text{dom} f$. \square

Some simple examples

Example

- Exponential e^{ax} is convex on \mathbb{R} for $a \in \mathbb{R}$.
- Powers x^a are convex on \mathbb{R}_{++} for $a \ge 1$ or $a \le 0$, and concave for $0 \le a \le 1$.
- Powers of absolute value, $|x|^p$ for $p \ge 1$, is convex on \mathbb{R} .
- Logarithm $\log x$ is convex on \mathbb{R}_{++} .
- Negative entropy $x \log x$ is convex on \mathbb{R}_{++} . (Also on \mathbb{R}_{+} if defined as 0 for x = 0.)

Max function

Max function, $f(x) = \max\{x_1, \dots, x_n\}$ is convex on \mathbb{R}^n .

Proof

$$f(\lambda x + (1 - \lambda)y) = \max_{i} \{\lambda x_{i} + (1 - \lambda)y_{i}\}$$

$$\leq \lambda \max_{i} x_{i} + (1 - \lambda) \max_{i} y_{i}$$

$$= \lambda f(x) + (1 - \lambda)f(y). \square$$

Log-sum-exp

Log-sum-exp function $f(x) = \log(e^{x_1} + \cdots + e^{x_n})$ is convex on \mathbb{R}^n .

Proof The Hessian of the log-sum-exp function is

$$\nabla^2 f(x) = \frac{1}{(\mathbf{1}^T z)^2} ((\mathbf{1}^T z) \mathsf{Diag}(z) - z z^T),$$

where $z=(e^{x_1},\ldots,e^{x_n})$. We must show that for all v, $v^T\nabla^2 f(x)v\geq 0$, but

$$v^{T}\nabla^{2}f(x)v = \frac{1}{(\mathbf{1}^{T}z)^{2}}\left(\left(\sum_{i=1}^{n}z_{i}\right)\left(\sum_{i=1}^{n}v_{i}^{2}z_{i}\right) - \left(\sum_{i=1}^{n}v_{i}z_{i}\right)^{2}\right) \geq 0.$$

The inequality follows from the Cauchy-Schwarz inequality $(a^Ta)(b^Tb) \ge (a^Tb)^2$ applied to $a_i = \sqrt{z_i}$ and $b_i = v_i\sqrt{z_i}$. \square

Sublevel sets and graphs

Definition

The α -sublevel set of a function $f: \mathbb{R}^n \to \mathbb{R}$ is

$$C_{\alpha} = \{x \in \text{dom} f | f(x) \leq \alpha \}.$$

Sublevel sets of a convex function are convex. (Converse is false.)

Definition

The graph of a function $f: \mathbb{R}^n \to \mathbb{R}$ is $\{(x, f(x)) | x \in \text{dom} f\}$.

The epigraph of f is $epif = \{(x, t) | x \in dom f, f(x) \le t\}.$

The hypograph of f is hyp $f = \{(x, t) | x \in \text{dom} f, f(x) \ge t\}$.

A function is convex (concave) if and only if its epigraph (hypograph, resp.) is convex.

Epigraph and convex function

Consider the first-order condition for convexity: $\forall x, y \in \text{dom} f$, $f(y) \ge f(x) + \nabla f(x)^T (y-x)$. Thus, if $(y,t) \in \text{epi} f$, then $t \ge f(y) \ge f(x) + \nabla f(x)^T (y-x)$. Hence $\nabla f(x)^T (y-x) - (t-f(x)) \le 0$. Thus,

$$(x,t) \in \operatorname{epi} f \Rightarrow \left[egin{array}{c}
abla f(x) \\ -1 \end{array} \right]^T \left(\left[egin{array}{c} y \\ t \end{array} \right] - \left[egin{array}{c} x \\ f(x) \end{array} \right] \right) \leq 0,$$

which means hyperplane in \mathbb{R}^{n+1} defined by $(\nabla f(x), -1)$ supports epif at the boundary point (x, f(x)).

Nonnegative scaling preserves convexity. **Proof** If $w \ge 0$ and f is convex, we have

$$\operatorname{epi}(wf) = \left[\begin{array}{cc} I & 0 \\ 0 & w \end{array} \right] \operatorname{epi}f,$$

which is convex because the image of a convex set under a linear mapping is convex. \Box

If f_1, \ldots, f_m are convex functions, then $\forall w_i \geq 0$, $i = 1, \ldots, m$, $f = w_1 f_1 + \cdots + w_m f_m$ is convex.

Suppose $f: \mathbb{R}^n \to \mathbb{R}$, $A \in \mathbb{R}^{n \times m}$, and $b \in \mathbb{R}^n$. Define $g: \mathbb{R}^m \to \mathbb{R}$ by g(x) = f(Ax + b), with $dom g = \{x | Ax + b \in dom f\}$.

Then, if f is convex, so is g; if f is concave, so is g. **Proof** Suppose $(x,s)^T$, $(y,t)^T \in \text{epi}g$ satisfy $f(Ax+b) \leq s$ and $f(Ay+b) \leq t$. Then,

$$f(A((1-\lambda)x + \lambda y) + b) = f((1-\lambda)(Ax + b) + \lambda(Ay + b)))$$

$$\leq (1-\lambda)f(Ax + b) + \lambda f(Ay + b) \leq (1-\lambda)s + \lambda t.$$

Thus
$$(1 - \lambda)(x, s)^T + \lambda(y, t)^T \in \text{epig.} \square$$

If f_1 and f_2 are convex functions, then so is their pointwise maximum,

$$f(x) = \max\{f_1(x), f_2(x)\}$$
 with $dom f = dom f_1 \cap dom f_2$.

Proof $0 \le \lambda \le 1$ and $x, y \in \text{dom} f$,

$$\begin{array}{lll} f(\lambda x + (1 - \lambda)y) & = & \max\{f_1(\lambda x + (1 - \lambda)y), f_2(\lambda x + (1 - \lambda)y)\} \\ & \leq & \max\{\lambda f_1(x) + (1 - \lambda)f_1(y), \lambda f_2(x) + (1 - \lambda)f_2(y)\} \\ & \leq & \max\{\lambda f_1(x), \lambda f_2(x)\} + \max\{(1 - \lambda)f_1(y), (1 - \lambda)f_2(y)\} \\ & = & \lambda \max\{f_1(x), f_2(x)\} + (1 - \lambda)\max\{f_1(y), f_2(y)\} \\ & = & \lambda f(x) + (1 - \lambda)f(y). \ \Box \end{array}$$

Or, easy to see $epif = epif_1 \cap epif_2$.

If for each $y \in A$, f(x, y) is convex in x, then the function g, defined as

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y),$$

is convex in x. $(dom g = \{x | (x, y) \in dom f \ \forall y \in A, \sup_{y \in A} f(x, y) < \infty\})$

Application

- Support function of a set, $S_C(x) = \sup\{x^T y | y \in C\}$ is convex.
- Distance to farthest point of a set, $f(x) = \sup_{y \in C} ||x y||$ is convex.
- Least-squares as function of weights $g(w) = \inf_x \sum_{i=1}^n w_i (a_i^T x b_i)^2$ with $\operatorname{dom} g = \{w | \inf_x \sum_{i=1}^n w_i (a_i^T x b_i)^2 > -\infty\}$. Needs proof.
- Max eigenvalue of symm matrices $f(X) = \sup\{y^T X y | \|y\|_2 = 1\}$.
- Norm of a matrix

Convex as pointwise affine supremum

If $f: \mathbb{R}^n \to \mathbb{R}$ is convex, with dom $f = \mathbb{R}^n$, then we have

$$f(x) = \sup\{g(x)|g \text{ affine}, g(z) \le f(z) \text{ for all } z\}.$$

Proof (\geq) Easy.

(\leq) For any x we can find a supporting hyperplane of epif at (x, f(x)): $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ with $(a, b) \neq 0$ such that $\forall (z, t) \in \text{epi} f$,

$$\begin{bmatrix} a \\ b \end{bmatrix}^T \begin{bmatrix} x-z \\ f(x)-t \end{bmatrix} \leq 0. \text{ Or, } a^T(x-z)+b(f(x)-f(z)-s) \leq 0,$$

for all $z\in {\sf dom} f=\mathbb{R}^n$ and all $s\geq 0$. This implies b>0 as easily seen. Therefore,

$$g(z) = f(x) + (a/b)^{T}(x-z) \le f(z)$$

for all z. The function g is an affine underestimator of f and satisfies

$$g(x) = f(x)$$
. \square

Chain rule: Review

Consider a twice differentiable $f: \mathbb{R}^n \to \mathbb{R}^m$ whose dom f is assumed to be open for simplicity.

• For m=1, the *derivative Df* : $\mathbb{R}^n \to \mathbb{R}$ of f at x is defined to be

$$Df(x) = [D_1f(x)\cdots D_nf(x)].$$

A linear transformation from \mathbb{R}^n to \mathbb{R} which linearly approximates f at x.

• For $m \ge 2$, the *derivative* of f at x is defined to be

$$Df(x) = \begin{bmatrix} Df_1(x) \\ \vdots \\ Df_m(x) \end{bmatrix}.$$

A linear transformation from \mathbb{R}^n to \mathbb{R}^m which linearly approximates f at x.

Chain rule: Review(cont'd)

• For m = 1, we define the *gradient* of f is a column-wise representation of its derivative:

$$\nabla f(x) = \left[\begin{array}{c} D_1 f(x) \\ \vdots \\ D_n f(x) \end{array} \right],$$

- a function from $\mathbb{R}^n \to \mathbb{R}^n$.
- For m=1, the *Hessian* $\nabla^2 f(x)$ of f is defined to be the derivative of the gradient ∇f

$$\nabla^2 f(x) = \begin{bmatrix} D_{11} f(x) & \cdots & D_{1n} f(x) \\ \vdots & \ddots & \vdots \\ D_{n1} f(x) & \cdots & D_{nn} f(x) \end{bmatrix}.$$

Chain rule: Review(cont'd)

Suppose that $h: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $x \in \text{dom} h$, and that $g: \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at $h(x) \in \text{dom} g$. (Assume domains are open.) Let $f:=g\circ h: \mathbb{R}^n \to \mathbb{R}^p$ by $(g\circ h)(x)=g(h(x))$. Then, f is differentiable at x and its derivative is

$$Df(x) = D(g \circ h)(x) = Dg(h(x))Dh(x).$$

Convexity conditions of composition

• Let p=1 and we consider case m=1. For the convexity conditions of composition, it suffices to consider one-dimensional cases: n=1. Assume g, h twice differ ble, $dom g = dom h = \mathbb{R}$. Then

$$f''(x) = g''(h(x))h'(x)^{2} + g'(h(x))h''(x).$$

- g convex, nondecreasing, h convex $\Rightarrow f$ convex,
- g convex, nonincreasing, h concave $\Rightarrow f$ convex,
- g concave, nondecreasing, h concave $\Rightarrow f$ concave,
- g concave, nonincreasing, h convex $\Rightarrow f$ concave.

- In general,
 - g convex, \tilde{g} nondecreasing, h convex $\Rightarrow f$ convex,
 - g convex, \tilde{g} nonincreasing, h concave $\Rightarrow f$ convex,
 - g concave, \tilde{g} nondecreasing, h concave $\Rightarrow f$ concave,
 - g concave, \tilde{g} nonincreasing, h convex $\Rightarrow f$ concave.

Example

- $g(x) = \log(x)$, then g concave, \tilde{g} nondecreasing
- $g(x) = x^{1/2}$, then g concave, \tilde{g} nondecreasing
- $g(x) = x^{3/2}$, then g convex, \tilde{g} not nondecreasing
- $g(x) = x^{3/2}$ for $x \ge 0$, = 0 for x < 0 then g convex, \tilde{g} nondecreasing.

Proposition

g convex, \tilde{g} nondecreasing, h convex $\Rightarrow f$ convex.

Proof: □

The monotonicity of \tilde{g} is to guarantee convexity of $h^{-1}(\text{dom}g)$. (Then $\text{dom}f = \text{dom}h \cap h^{-1}(\text{dom}g)$ is convex.) Without it, $h^{-1}(\text{dom}g)$ is not convex in general: for instance $h(x) = x^2$, g(x) = x with domain $1 \le x \le 2$.

Example

- $h \text{ convex} \Rightarrow \exp h \text{ convex}$.
- h concave, positive $\Rightarrow \log h$ concave.
- h concave, positive $\Rightarrow 1/h(x)$ concave.
- h convex, nonnegative, and $p \ge 1 \Rightarrow h(x)^p$ convex.
- $h \operatorname{convex} \Rightarrow -\log(-h(x)) \operatorname{convex} \operatorname{on} \{x | h(x) < 0\}.$

Consider $g: \mathbb{R}^m \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}^m$ with $\operatorname{dom} g = \mathbb{R}^m \operatorname{dom} h = \mathbb{R}$. Then can derive similar conditions for convexity of $g \circ h$ for general m from

$$\nabla^2 f(x) = Dg(h(x))\nabla^2 h(x) + Dh(x)^T \nabla^2 g(h(x))Dh(x).$$

(Here, we understand $\nabla^2 h$ is $m \times 1$ matrix, $[f_1''(x), \dots, f_m''(x)]^T$.)

However, even without differentiability, we can observe the followings.

- g convex, \tilde{g} nondecreasing in each argument, h_i convex $\Rightarrow f$ convex,
- g convex, \tilde{g} nonincreasing in each argument, h_i concave $\Rightarrow f$ convex,
- g concave, \tilde{g} nondecreasing in each argument, h_i concave $\Rightarrow f$ concave.

Example

- $g(z) = z_{[1]} + \cdots + z_{[r]}$, sum of r largest components of $z \in \mathbb{R}^m$. Then g is convex and nondecreasing in each z_i . Therefore, if h_1, \ldots, h_m convex functions on \mathbb{R}^n , $f := g \circ h$ is convex.
- $g(z) = \log(\sum_{i=1}^{m} e^{z_i})$ is convex and nondecreasing in each z_i . Hence if h_i are convex, so is $g \circ h$.
- For $0 , <math>g(z) = (\sum_{i=1}^m z_i^p)^{1/p}$ is concave on \mathbb{R}_+^m and its extension is nondecreasing in each z_i . Hence if h_i are concave and nonnegative $g \circ h$ is concave.
- For $p \ge 1$, if h_i are convex and nonnegative, $(\sum_{i=1}^m h_i(x)^p)^{1/p}$ is convex.
- $g(z) = (\prod_{i=1}^m z_i)^{1/m}$ on \mathbb{R}_+^m is concave and its extension is nondecreasing in each z_i . If h_i are nonnegative concave function, so is $(\prod_{i=1}^m h_i)^{1/m}$.

Perspective of a function

If $f:\mathbb{R}^n \to \mathbb{R}$, then the *perspective* of f is the function $g:\mathbb{R}^{n+1} \to \mathbb{R}$ defined by

$$g(x,t) = tf(x/t),$$

with domain

$$\mathsf{dom} g = \{(x,t)|x/t \in \mathsf{dom} f, t > 0\}$$

Proposition

If f is convex (concave, resp.), so is its perspective.

Proof: □

Perspective of a function(cont'd)

Example

 $g(x,t) = \frac{x^T x}{t}$ is convex on t > 0.

Example

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is convex, then is

$$g(x) = (c^T x + d) f(Ax + b) / (c^T x + d),$$

with dom $g = \{x | c^T x + d > 0, Ax + b\}/(c^T x + d) \in dom f\}.$

Definition

A function $f:\mathbb{R}^n\to\mathbb{R}$ is called quasiconvex if its domain and sublevel sets

$$S_{\alpha} = \{ x \in \mathrm{dom} f | f(x) \le \alpha \}$$

are convex $\forall \alpha \in \mathbb{R}$.

- A function is *quasiconcave* if -f is quasiconvex.
- A function that is both quasiconvex and quasiconcave is called *quasilinear*.

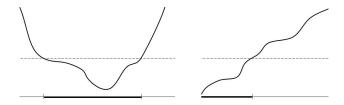


Figure: Quasiconcave and quasilinear function

Examples

- Logarithm log x is quasiconvex, quasiconcave, and hence quasilinear.
- Ceiling ceil(x) = $\min\{z \in \mathbb{Z} | x \ge z\}$ is quasilinear.
- Length of a vector x, $\max\{i|x_i\neq 0\}$ is quasiconvex.
- $f(x_1, x_2) = x_1x_2$ on \mathbb{R}^2_+ is quasiconcave.
- $f(x) = \frac{a^T x + b}{c^T x + d}$ on $\{x | c^T x + d > 0\}$ is quasiconvex, quasiconcave and hence quasilinear.
- Distance ratio $f(x) = \frac{\|x-a\|_2}{\|x-b\|_2}$ is quaisconvex on halfspace $\|x-a\|_2 \le \|x-b\|_2$.

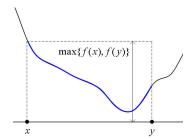
Basic properties

Proposition

A function f is quasiconvex if and only if domf is convex and for any $x,y\in domf$ and $0\leq \lambda \leq 1$,

$$f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}.$$

Proof



Basic properties(cont'd)

- *f* is quasiconvex iff its restriction on line is quasiconvex.
- A continuous function $f: \mathbb{R} \to \mathbb{R}$ is quasiconvex iff one of the followings holds:
 - f is nondecreasing,
 - f is nonincreasing, or
 - $\exists c \in \text{dom} f$: f is nonincreasing on $x \le c$, and nondecreasing on $x \ge c$.

First-order condition

Proposition

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable. Then f is quasiconvex if and only if domf is convex and for all $x, y \in domf$

$$f(y) \le f(x) \Rightarrow \nabla f(x)^{\mathsf{T}} (y - x) \le 0.$$

(Thus $\nabla f(x)$ defines supporting hyperplane of $\{y|f(y) \leq f(x)\}$.)

Proof Case 1: $f : \mathbb{R} \to \mathbb{R}$.

"If" Take any x, $y \in \text{dom} f$ (assumed open) and $0 < \lambda < 1$. We need to show that $f((1-\lambda)x + \lambda y) \leq \max\{f(x), f(y)\}$. Assume $f(x) \geq f(y)$ and $f((1-\lambda)x + \lambda y) > f(x)$. Then there is x < z < y such that f(z) > f(x) and f'(z) > 0 and hence (z-x)f'(z) > 0. A contradiction. \square

Second-order condition

Supposer f is twice differentiable. If f is quasiconvex, then for all $x \in \text{dom} f$, and all $y \in \mathbb{R}^n$, we have

$$y^T \nabla f(x) = 0 \Rightarrow y^T \nabla^2 f(x) y \ge 0$$

When $\nabla f(x) \neq 0$, $\nabla^2 f(x) \succeq 0$ on $\nabla f(x)^{\perp}$, and hence may have at most 1 neg eigenvalue. As a (partial) converse, f is quasiconvex if f satisfies

$$y^T \nabla f(x) = 0 \Rightarrow y^T \nabla^2 f(x) y > 0.$$

Nonnegative weighted maximum
 A nonnegative weighted maximum of quasiconvex functions

$$f = \max\{w_1 f_1, \dots, w_m f_m\}$$

with $w_i \ge 0$ and f_i quasiconvex, is quasiconvex.

- Composition
 - If $g: \mathbb{R}^n \to \mathbb{R}$ is quasiconvex and $h: \mathbb{R} \to \mathbb{R}$ is nondecreasing, then $f = h \circ g$ is quasiconvex.
 - Composition of quasiconvex function with affine or linear-fractional transform is quasiconvex: if f is quasiconvex, so are f(Ax+b) and $f(\frac{Ax+b}{c^Tx+d})$ on $\{x|c^Tx+d>0, \frac{Ax+b}{c^Tx+d}\in \text{dom}f\}$.

• Minimization. If f(x, y) is quasiconvex jointly in x and y and C is a convex set, then the function

$$g(x) = \inf_{y \in C} f(x, y)$$

is quasiconvex.

Homework

3.1, 3.2, 3.3, 3.6, 3.7, 3.9, 3.17, 3.20, 3.22, 3.32, 3.43