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Basic properties and examples Definitions

Examples

Definition

A function f : R" — R is convez if its domain domf is convex and if for all
x,y € domf, and 0 < A <1, we have

F((L=X)x+ Ay) < (1= XNFf(x)+ Af(y).

(1-2)FO+2K(y)

f((1-A)x+hy

X (1-1)x+hy y

@ Strictly convex if strict inequality holds whenever x # y and 0 < A\ < 1.

@ We say f is concave if —f is convex, and affine if both convex and
concave.
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Basic properties and examples

Definitions
Examples

“One-dimensionality” of convexity

From definition, a function f is convex iff its restriction to any line is
convex: for any x,y € domf, g(A) := f(x + A(y — x)) is convex over
{Alx + Ay — x) € domf}

Optimization Lab.
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Basic properties and examples Definitions

Examples

Extended-value extensions

If f is convex we define its extended-value extension,

= f(x) x & domf
Fo) = { e) x ¢ domf

With the extended reals, this can simplify notation, since we do not need to
explicitly describe the domain.

Example

For a convex set C, its indicator function /¢ is defined to be Ic(x) = 0 for
all x € C. Then its extension is

={ % X%¢

Suppose domf = R". Then, min{f(x) : x € C} is equivalent to minimizing
f+lc.
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Basic properties and examples Definitions

Examples

First-order conditions

Suppose f : R" — R is differentiable. Then f is convex iff domf is convex and

f(y) > f(x) + VF(x)"(y — x) Vx,y € domf.

Proof Case 1: n = 1.

“Only if’ Assume f is convex and x,y € domf with x # y. Since domf is
convex, we have for all 0 < A <1, x + A(y — x) € domf, and by convexity of
fof(x+ Ay —x)) < (1= Nf(x)+A(y).

Dividing both sides by A, we obtain

FOx ALy =) = ().
A

Taking limit as A — 0, we get f(y) > f(x) + f'(x)(y — x).

fly) = () +
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Basic properties and examples Definitions

Examples

First-order conditions (cont’d)

“If" Choose any x, y € domf and 0 < A <1, and let z=Ax+ (1 — \)y.
Then, by the above,

f(x) > f(z) + f'(2)(x — 2), fly) > f(2)+ f'(2)(y — 2).

Multiplying the first inequality by A, the second by 1 — X, and adding them

yields
M)+ (1 =Nf(y) > f(2) = FOOx+ (1= Ny).

Case 2: n > 2. Let x,y € domf. Consider restriction of f to line through x
and y: g(A) := f(x 4+ A(y — x)), and apply the above case. [J
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Basic properties and examples Definitions

Examples

Second-order conditions (cont'd)

Proposition

Assume f is twice differentiable on domf which is open. Then f is convex if
and only if domf is convex and its Hessian is positive semidefinite: Vx € domf,

V?f(x) = 0.

Remark that

for y € domf and z € R", define g(A) := f(y + Az). Then
g"(\) = z"V2f(y + Az)z. Thus, g”()\) > 0 on {\y + Az € domf} if
and only if V2f(x) = 0 Vx € domf.
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Basic properties and examples Definitions

Examples

Second-order conditions (cont'd)

Proof Case 1 f : R — R
“Only if" If f is convex, then f(y) > f(x) + f'(x)(y — x) for all x,y € domf,
where x < y. Thus,

()= 109 |

y—x

Taking limit as x — y, we get f'(y) > f'(x), which implies that f’ is monotone
nondecreasing. Hence, f”/(x) > 0,Vx € domf.
“If” For all x,y € domf, there exists z € domf satisfying

F(y) =)+ F )y —x) + %f"(Z)(y = x)" > F(x) + ' (x)(y = x)-

The second inequality follows from the hypothesis. Hence f is convex.
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Basic properties and examples Definitions

Examples

Second-order conditions (cont'd)

Case 2 f:R" — R

f is convex if and only if g(A) = f(x + Ay) is convex on {A|x + Ay € domf},
Vx € domf and y. Then, by Case 1, the latter holds if and only if g”’()\) > 0
on {A|x + Ay € domf}:

£ = e ®= (S

i=1

n d n
= D Yigyfilxt M) =Y vV (x+ M)y
i=1

i=1

= y'Vf(x+\y)y >0,

where V2f(x);. is the i-th row of V2f(x). Therefore, Vf(x) = 0 for all
x € domf. O
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Basic properti nd exampl ]
asic properties and examples Definitions

Examples

Some simple examples

@ Exponential e?* is convex on R for a € R.

@ Powers x? are convex on R, for a > 1 or a <0, and concave for
0<a<l.

@ Powers of absolute value, |x|P for p > 1, is convex on R.

Logarithm log x is convex on R, ;.

Negative entropy x log x is convex on R, ;. (Also on R, if
defined as 0 for x =0.)
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Basi i | S
asic properties and examples Definitions

Examples

Max function

Max function, f(x) = max{xy,...,x,} is convex on R".

Proof

FAx+(1=A)y) = max{Ax + (1= Ay}

IA

Amaxx; + (1 — X) maxy;
AM(x)+ (1= Nf(y).O
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Basi i | S
asic properties and examples Definitions

Examples

Log-sum-exp

Log-sum-exp function f(x) = log(e** + --- + €*) is convex on R".

Proof The Hessian of the log-sum-exp function is

V2f(x) = (17_12)2 (17 z)Diag(z) — zz"),
where z = (e*,...,e%). We must show that for all v, v V2f(x)v >0,
but
1 n n n 2
T2 _ _ 2, .
v Vo (x)v = (]'7—2)2<(§Z’)(§V’ z,) — (IZ_; v,z,) ) >0.

The inequality follows from the Cauchy-Schwarz inequality (a”a)(b' b) >
(a"b)? applied to a; = /z and b; = v;\/z. O
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Basi i | S
asic properties and examples Definitions

Examples

Sublevel sets and graphs

Definition

The a-sublevel set of a function f : R” — R is

Co = {x € domf|f(x) < a}.

Sublevel sets of a convex function are convex. (Converse is false.)

Definition

The graph of a function f : R” — R is {(x, f(x))|x € domf}.
The epigraph of f is epif = {(x, t)|x € domf, f(x) < t}.
The hypograph of f is hypf = {(x, t)|x € domf, f(x) > t}.

A function is convex (concave) if and only if its epigraph (hypograph, resp.) is

convex.
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Basi i | S
asic properties and examples Definitions

Examples

Epigraph and convex function

Consider the first-order condition for convexity: V x,y € domf, f(y) >
f(x) + VFf(x)T(y — x). Thus, if (y, t) € epif, then t > f(y) > f(x) +
V£(x)T(y — x). Hence Vf(x)T(y — x) — (t — f(x)) < 0. Thus,

wnems [T ([1]-[ ] )50

which means hyperplane in R"*1 defined by (Vf(x), —1) supports epif
at the boundary point (x, f(x)).

Optimization Lab. Convex functions A supplementary note to Chapter 3 of Convex



Nonnegative weighted sums
Comp h an affine mapping
imum and supremum

Operations that preserve convexity

Nonnegative scaling preserves convexity.
Proof If w > 0 and f is convex, we have

0

epi(wf) — [ 0o ]epif,

which is convex because the image of a convex set under a linear
mapping is convex. [

If f1,...,f, are convex functions, then V w; >0, i =1, ..., m,
f=wifi + -+ wnfy, is convex.
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Operations that preserve convexity

Suppose f : R" - R, A€ R"™™ and b € R". Define g : R™ — R by
g(x) = f(Ax + b), with domg = {x|Ax + b € domf}.
Then, if f is convex, so is g; if f is concave, so is g.

Proof Suppose (x,s)7, (y,t)" € epig satisfy f(Ax + b) < s and
f(Ay + b) < t. Then,

f(A((l — N)x+Ay) + b) - f((1 — A)(Ax + b) + A(Ay + b)))
< (1= \)F(Ax + b) + AF(Ay + b) < (1 — \)s + At.

Thus (1= A)(x,s)T + A(y,t)" € epig. O

Optimization Lab. Convex functions A supplementary note to Chapter 3 of Convex



. . affine mapping
Operations that preserve convexity PPINg

mum and supremum
Composition

If f and £, are convex functions, then so is their pointwise maximum,
f(x) = max{fi(x), 2(x)} with domf = domf; N domf,.
Proof 0 < A <1 and x,y € domf,

max{fi(Ax + (1 = A)y), L(Ax + (1 = A)y)}
max{Afi(x) + (1 — A)A(y), Aa(x) + (1 = N f(y)}
max{Afi(x), Al(x)} + max{(1 = A)fi(y), (1 = A)fa(y)}
= Amax{fi(x), (x)} + (1 — A) max{f(y), L(y)}

= M)+ (1 -=Nf(y). O

f(Ax+ (1= XN)y)

IN N

Or, easy to see epif = epifi N epifo.
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an affine mapping
Pointwise maximum and supremum
Composition

Operations that preserve convexity

If for each y € A, f(x,y) is convex in x, then the function g, defined as

g(x) = sup f(x,y),
yeEA

is convex in x. (domg = {x| (x,y) € domf Vy € A, sup,c 4 f(x,y) < 00})

Application

@ Support function of a set, Sc(x) = sup{x"y|y € C} is convex.
@ Distance to farthest point of a set, f(x) = sup, ¢ [[x — y|| is convex.

@ Least-squares as function of weights g(w) = infc Y7, wi(a/ x — b;)?
with domg = {w|infx Y7, wi(a/ x — b;)> > —co}. Needs proof.

@ Max eigenvalue of symm matrices f(X) = sup{y’ Xy| |ly|. = 1}.

@ Norm of a matrix
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ighted sums

th an affine mapping

mum and supremum
Composition

Operations that preserve convexity

Convex as pointwise affine supremum

If f:R"” — R is convex, with domf = R", then we have
f(x) = sup{g(x)|g affine, g(z) < f(z) for all z}.

Proof (>) Easy.
(<) For any x we can find a supporting hyperplane of epif at (x, f(x)):
a € R" and b € R with (a, b) # 0 such that V (z, t) € epif,

2] ] e, ] <0 00 e brta -0z

for all z € domf = R" and all s > 0. This implies b > 0 as easily seen.

Therefore,
g(z) = f(x) + (a/b) (x — 2) < f(2)

for all z. The function g is an affine underestimator of f and satisfies

g(x)=1f(x). O
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d sums
affine mapping
aximum and supremum
Composition

Operations that preserve convexity

Chain rule: Review

Consider a twice differentiable f : R" — R™ whose domf is assumed to
be open for simplicity.

@ For m =1, the derivative Df : R" — R of f at x is defined to be
Df(x) = [ Dif(x)- - Dpf(x) ] .

A linear transformation from R” to R which linearly approximates f
at x.
@ For m > 2, the derivative of f at x is defined to be
Dfi(x)
Df(x) = :
Dfin(x)
A linear transformation from R"” to R™ which linearly approximates

f at x.
Optimization Lab. Convex functions A supplementary note to Chapter 3 of Convex



. . th an affine mapping
Operations that preserve convexit . =
P P! Y Pointwise maximum and supremum

Composition

Chain rule: Review(cont’d)

@ For m =1, we define the gradient of f is a column-wise
representation of its derivative:
le(X)
Vi(x) = : )
Dpf(x)

a function from R" — R".

@ For m =1, the Hessian V?f(x) of f is defined to be the derivative
of the gradient Vf

Dllf(X) Dlnf(X)
V2 (x) = A
Dpif(x) -+ Duaf(x)

Optimization Lab. Convex functions A supplementary note to Chapter 3 of Convex



ighted sums
C th an affine mapping
Poir e maximum and supremum
Composition

Operations that preserve convexity

Chain rule: Review(cont’d)

Suppose that h: R" — R™ is differentiable at x € domh, and that g :
R™ — RP is differentiable at h(x) € domg. (Assume domains are open.)
Let f :=goh: R" — RP by (g o h)(x) = g(h(x)). Then, f is
differentiable at x and its derivative is

DF(x) = D(g o h)(x) = De(h(x))Dh(x).
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Nonnegative ted sums

Comy h an e mapping
Point: imum and supremum
Composition

Operations that preserve convexity

Convexity conditions of composition

@ Let p =1 and we consider case m = 1. For the convexity conditions of
composition, it suffices to consider one-dimensional cases: n = 1. Assume
g, h twice differ'ble, domg = domh = R. Then

f"(x) = g (h(x))h' (x)* + &' (h(x))h" (x).

g convex, nondecreasing, h convex = f convex,

g convex, nonincreasing, h concave = f convex,

g concave, nondecreasing, h concave = f concave,
g concave, nonincreasing, h convex = f concave.
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th an affine mapping
imum and supremum
Composition

Operations that preserve convexity

Composition(cont'd)

@ In general,

g convex, g nondecreasing, h convex = f convex,

g convex, g nonincreasing, h concave = f convex,

g concave, g nondecreasing, h concave = f concave,
g concave, g nonincreasing, h convex = f concave.

log(x), then g concave, § nondecreasing

@ g(x

) =

@ g(x)= x'/2_ then g concave, g nondecreasing

@ g(x)= x3/2, then g convex, g not nondecreasing
) f—

@ g(x x3/2 for x > 0, =0 for x < 0 then g convex, & nondecreasing.
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Composition with an affine mapping

Operations that preserve convexity ~
mum and supremum

Composition

Composition(cont'd)

Proposition

g convex, g nondecreasing, h convex = f convex.

Proof: (O
The monotonicity of & is to guarantee convexity of h~*(domg). (Then domf
= domh N h™!(domg) is convex.) Without it, h~*(domg) is not convex in

general: for instance h(x) = x?, g(x) = x with domain 1 < x < 2.
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Operations that preserve convexit; .
P P! Y Pointwise r ximum and supremum

Composition

Composition(cont'd)

h convex = exp h convex.

h concave, positive = log h concave.
h concave, positive = 1/h(x) concave.

h convex, nonnegative, and p > 1 = h(x)P convex.

h convex = — log(—h(x)) convex on {x|h(x) < 0}.
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Composition with an affine mapping

Operations that preserve convexity ~
mum and supremum

Composition

Composition(cont'd)

Consider g : R — R and h: R — R™ with domg = R™ domh = R. Then can
derive similar conditions for convexity of g o h for general m from

Vf(x) = Dg(h(x))V?h(x) + Dh(x)"V>g(h(x)) Dh(x).
(Here, we understand V2h is m X 1 matrix, 7' (%), ..., fé’(x)]T.)
However, even without differentiability, we can observe the followings.
@ g convex, & nondecreasing in each argument, h; convex = f convex,
@ g convex, g nonincreasing in each argument, h; concave = f convex,

@ g concave, g nondecreasing in each argument, h; concave = f concave.
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Nonnegative weighted sums
Compos h an affine mapping
Pointw ximum and supremum
Composition

Operations that preserve convexity

Composition(cont'd)

@ g(z) =z + - - - + 7,9, sum of r largest components of z € R™. Then g
is convex and nondecreasing in each z;. Therefore, if h, ..., h, convex
functions on R", f := g o h is convex.

_ 0 L ‘ .
@ g(z) = log(> 1, ) is convex and nondecreasing in each z;. Hence if
h; are convex, so is g o h.

@ For0< p<1,g(z) = (3", 2")"" is concave on RT and its extension

is nondecreasing in each z;. Hence if h; are concave and nonnegative
g o h is concave.

@ For p > 1, if h; are convex and nonnegative, (37, hi(x)P)/? is convex.

@ g(z) = (I, z:)"/™ on RT is concave and its extension is

i=

nondecreasing in each z;. If h; are nonnegative concave function, so is

(IT7y h)"/™.
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Composition with an affine mapping

Operations that preserve convexity ~
mum and supremum

Composition

Perspective of a function

If f:R" — R, then the perspective of f is the function g : R™! — R defined
by
g(x, t) = tf(x/t),
with domain
domg = {(x, t)|x/t € domf,t > 0}

Proposition

If f is convex (concave, resp.), so is its perspective.

Proof: [J
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Composition with an a
se maximum and supremum
Composition

Perspective of a function(cont’d)

Operations that preserve convexity

-
g(x,t) = ** is convex on t > 0.

Suppose f : R” — R is convex, then is

g(x) = (c"x + d)f (Ax + b)/(c"x + d),
with domg = {x|c"x +d >0, Ax + b)/(c”x + d) € domf}.
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tiable quasiconvex functions

Quasiconvex functions ations that preserve quasiconvexity

Definition

A function f : R” — R is called quasiconvex if its domain and sublevel sets
So = {x € domf|f(x) < a}

are convex V o € R.

@ A function is quasiconcave if —f is quasiconvex.

@ A function that is both quasiconvex and quasiconcave is called quasilinear.

Figure: Quasiconcave and quasilinear function
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tiable quasiconvex functions

Quasiconvex functions ations that preserve quasiconvexity

Examples

Logarithm log x is quasiconvex, quasiconcave, and hence quasilinear.
Ceiling ceil(x) = min{z € Z|x > z} is quasilinear.

Length of a vector x, max{i|x; # 0} is quasiconvex.

f(x1,x) = x1x2 on Ri is quasiconcave.

,
b T . . .
f(x) = Z’Tﬁd on {x|c"x + d > 0} is quasiconvex, quasiconcave and

hence quasilinear.

— llx=all2

@ Distance ratio f(x) = Tx=bllz

[[x = bl2.

is quaisconvex on halfspace ||x — a|l2 <
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Quasiconvex functions

Basic properties

Proposition
A function f is quasiconvex if and only if domf is convex and for any
x,y € domf and 0 < A <1,

FOX+ (1 A)y) < max{£(x), F(»)}.

Proof [

max{f(x), ()}
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Differentiable quasiconvex functions

. . Operations that preserve quasic
Quasiconvex functions

Basic properties(cont'd)

@ f is quasiconvex iff its restriction on line is quasiconvex.
@ A continuous function f : R — R is quasiconvex iff one of the followings
holds:

e f is nondecreasing,

e f is nonincreasing, or
e J ¢ € domf: f is nonincreasing on x < ¢, and nondecreasing

on x> c.
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Differentiable quasiconvex functions

. . Operations that preserve quasiconvexity
Quasiconvex functions

First-order condition

Proposition

Suppose f : R" — R s differentiable. Then f is quasiconvex if and only if
domf is convex and for all x,y € domf

f(y) < f(x) = Vi(x)"(y —x) <0.

(Thus V£ (x) defines supporting hyperplane of {y|f(y) < f(x)}.)

Proof Case 1: f : R — R.

“If" Take any x, y € domf (assumed open) and 0 < A\ < 1. We need to show
that £((1 — A)x + Ay) < max{f(x), f(y)}. Assume f(x) > f(y) and

£((1 = A)x + Ay) > f(x). Then there is x < z < y such that f(z) > f(x) and
f'(z) > 0 and hence (z — x)f'(z) > 0. A contradiction. [
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Differentiable quasiconvex functions

. . Operations that preserve quasiconvexity
Quasiconvex functions

Second-order condition

Supposer f is twice differentiable. If f is quasiconvex, then for all x € domf,
and all y € R", we have

yTVf(x) =0= yTV2f(x)y >0

When Vf(x) # 0, V?f(x) = 0 on Vf(x)*, and hence may have at most 1 neg
eigenvalue. As a (partial) converse, f is quasiconvex if f satisfies

Yy Vf(x)=0=y V?f(x)y > 0.
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Differentiable quasiconvex functions

. . Operations that preserve quasiconvexit
Quasu:onvex functlons p P a Yy

@ Nonnegative weighted maximum
A nonnegative weighted maximum of quasiconvex functions

f =max{wifi,..., Wnfm}

with w; > 0 and f; quasiconvex, is quasiconvex.

@ Composition

o If g:R" — R is quasiconvex and h: R — R is nondecreasing,
then f = ho g is quasiconvex.

e Composition of quasiconvex function with affine or
linear-fractional transform is quasiconvex: if f is quasiconvex,

so are f(Ax + b) and f(Z<5) on {x|c"x+d >0, 5 €
domf}.

Optimization Lab. Convex functions A supplementary note to Chapter 3 of Convex



tiable quasiconvex functions

. . Operations that preserve quasiconvexit
Quasu:onvex functlons p P a Yy

@ Minimization. If f(x,y) is quasiconvex jointly in x and y and C is a
convex set, then the function

£() = inf (x.y)

is quasiconvex.
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Differentiable quasiconvex functions

. . Operations that preserve quasiconvexit
Quasu:onvex functlons p P a Yy

Homework

3.1,3.2,33, 3.6, 3.7, 3.9, 3.17, 3.20, 3.22, 3.32, 3.43
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