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Recall our optimization, min{f0(x)| fi (x) ≤ 0, i = 1, · · · , m,
hj(x) = 0, j = 1, . . ., p} and D =

⋂n
i=0 domfi ∩

⋂p
i=1 domhi .

For convenience, in this chapter, we assume D = Rn. This may not be
very strong assumption especially when feasible region is included in D.

Definition

Lagrangian L : Rn × Rm × Rp → R is

L(x , λ, ν) = f0(x) +
m∑

i=1

λi fi (x) +

p∑
j=1

νjhj(x),

where λ ≥ 0 and ν are parameters called Lagrange multipliers or dual variables.
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An example

Recall, for convex optimization min{f (x)|Ax = b}, x is optimal iff ∃λ s.t.
ATλ = ∇f (x), where λ ∈ Rp. The proof essentially shows the condition
is also necessary for a local minimum. We consider an alternate proof of
the necessity.

Proof: Assume A is of full row rank. By reordering columns, if necessary,
A = [B,N] where B ∈ Rm×m is of full column rank. Accordingly,

partition x =
(

xB

xN

)
so that min{f (x)|BxB + NxN = b}, or, by

substituting xB = B−1(b − NxN),

min
{
g(xN) := f

(
B−1(b − NxN), xN

)
|xN ∈ Rn−m

}
. (1)

Optimization Lab. Optimality conditions



Lagrangian
Equality constrained case

Inequality constraints
KKT optimality conditions

Necessary conditions
Sufficient conditions

An example(cont’d)

Hence for any local minimum, x∗ =
(

x∗B
x∗N

)
, x∗N is a local minimum of (1).

Thus ∇g(x∗N) = 0:

−NTB−T∇xB
f

(
B−1(b − Nx∗N), x∗N

)
+∇xN

f
(
B−1(b − Nx∗N), x∗N

)
= 0.

Letting, λ∗ = −B−T∇xB
f

(
B−1(b − Nx∗N), x∗N

)
, and using x∗B =

B−1(b − Nx∗N) we get ∇f (x∗) + [B;N]Tλ∗ = 0 as desired.
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An example(cont’d)

Notice analogy between ∇f (x∗) + ATλ∗ = 0 (or, ∇f (x∗) ∈ N (A)) and
∇f (x∗) = 0, the necessary condition of unconstrained case. For
constrained case, it suffices that the gradient ∇f (x) at x = x∗ vanishes
along every direction into subspace Ax = b instead of Rn.
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An example(cont’d)

Now we consider the second order necessary condition of local minimum
of an unconstrained case: Hessian of objective at a local minimum is
PSD (See Exercise). Applying this to (1), if x∗ is a local minimum then
∇2g(x∗N) � 0.
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An example(cont’d)

But,

∇2g(xN) = ∇
(
− NTB−T∇xB f

(
B−1(b − NxN), xN

)
+∇xN f

(
B−1(b − NxN), xN

))
= −NTB−T

[
∇2

xB xB
f (B−1(b − NxN), xN);∇2

xB xN
f (B−1(b − NxN), xN)

] [−B−1N
I

]
+
[
∇2

xN xB
f (B−1(b − NxN), xN);∇2

xN xN
f (B−1(b − NxN), xN)

] [−B−1N
I

]
= NTB−T∇2

xB xB
f (B−1(b − NxN), xN)B−1N − NTB−T∇2

xB xN
f (B−1(b − NxN), xN)

−∇2
xN xB

f (B−1(b − NxN), xN)B−1N +∇2
xN xN

f (B−1(b − NxN), xN),

where,

∇2f (x∗) =

[
∇2

xB xB
f (x∗) ∇2

xB xN
f (x∗)

∇2
xN xB

f (x∗) ∇2
xN xN

f (x∗)

]
.
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An example(cont’d)

Thus

∇2g(x∗N) = NTB−T∇2
xB xB

f (x∗)B−1N − NTB−T∇2
xB xN

f (x∗)

−∇2
xN xB

f (x∗)B−1N +∇2
xN xN

f (x∗)

=
[
−NTB−T I

] [ ∇2
xB xB

f (x∗) ∇2
xB xN

f (x∗)
∇2

xN xB
f (x∗) ∇2

xN xN
f (x∗)

] [
−B−1N

I

]
.

From positive semidefiniteness of ∇2g(x∗N),

∀yB ∈ Rn−m, yT
N ∇2g(x∗N)yN = (−yT

N NTB−T , yT
N )∇2f (x∗)

(
−B−1NyN

yN

)
≥ 0.

Note that Ay = [B;N]
(

yB
yN

)
= 0 iff yB = −B−1NyN . Thus ∇2f (x∗) =

∇2f (x∗) +
∑m

i=1 λ∗i ∇2hi (x
∗) is PSD on N (A).
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First order necessary condition

The first and second order necessary conditions for min{f (x)|Ax = b} can be
generalized for general equality constrained cases.

Theorem

Consider equality constrained optimization min{f (x)| hi (x) = 0, i = 1, · · · , p}.
Assume x∗ is a local minimum and ∇h1(x

∗), . . ., ∇hp(x
∗) are linearly indep.

Then there is unique λ∗ such that

∇xL(x∗, λ∗) = ∇f (x∗) +

p∑
i=1

λ∗i ∇hi (x
∗) = 0. (2)
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First order necessary condition(cont’d)

Example

min x2
1 + x2

2

s.t. x1 + x2 = 1.
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First order necessary condition(cont’d)

Without regularity assumption, λ∗ may not exist.
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First order necessary condition(cont’d)
Proof

By using Implicit Function Theorem, can be proven similarly with the linear
constrained case in which xB = B−1(b − NxN) was an implicit function. But,
here we use penalty approach: Let x∗ be a local min of min{f (x) : h(x) = 0}
and for k ∈ N, consider the objective augmented with penalties,

Pk(x) = f (x) +
k

2
‖h(x)‖2

2 +
α

2
‖x − x∗‖2

2,

where α is a positive scalar.
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First order necessary condition(cont’d)
Proof(cont’d)

Let xk be optimal solution of

minPk(x)

s.t x ∈ S := {x |‖x − x∗‖ ≤ ε}

Notice that for all k,

Pk(x
k) = f (xk) +

k

2
‖h(xk)‖2

2 +
α

2
‖xk − x∗‖2

2 ≤ Pk(x
∗) = f (x∗). (3)

As f (xk) is bounded below on S , (3) implies h(xk) → 0 as k →∞.
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First order necessary condition(cont’d)
Proof(cont’d)

Also (3) implies f (xk) + α
2
‖xk − x∗‖2

2 ≤ f (x∗). Hence for every limit point of

x̄ of {xk}, we get

f (x̄) +
α

2
‖x̄ − x∗‖2

2 ≤ f (x∗). (4)

But since h(xk) → h(x̄) = 0, x̄ is feasible and we have f (x̄) ≥ f (x∗).
Combining this with (4) we get x̄ − x∗ = 0 or x̄ = x∗.
We have seen that {xk} converges to x∗ and hence for sufficiently large k’s, xk

is in the interior of S and xk is a minimum of the unconstrained problem
minPk(x). Therefore, for such k’s

0 = ∇Pk(x
k) = ∇f (xk) + kDh(xk)Th(xk) + α(xk − x∗). (5)
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First order necessary condition(cont’d)
Proof(cont’d)

Also for sufficiently large k’s, Dh(xk) is of full row rank as Dh(x∗). Thus
Dh(xk)Dh(xk)T is invertible. Multiplying (5) with (Dh(xk)Dh(xk)T )−1Dh(xk),
we get

kh(xk) = −
(
Dh(xk)Dh(xk)T

)−1

Dh(xk)
(
∇f (xk) + α(xk − x∗)

)
.

Hence, by taking limit as k →∞, kh(xk) converges to

λ∗ := −
(
Dh(x∗)Dh(x∗)T

)−1

Dh(x∗)∇f (xk).

Thus taking limit as k →∞ in (5), we get

∇f (x∗) + Dh(x∗)T λ∗ = 0.
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Second order necessary condition

Theorem

Assume x∗ is a local minimum , ∇h1(x
∗), . . ., ∇hp(x

∗) are linearly indep, and
f and hi are twice differ’ble. Assume λ∗ be the unique multiplier satisfying the
first order necessary condition. Then

zT

(
∇2f (x∗) +

p∑
i=1

λ∗i ∇2hi (x
∗)

)
z ≥ 0,∀ z : ∇hi (x

∗)T z = 0. (6)

In other words, ∇2
xL(x∗, λ∗) is PSD on the nullspace of Dh(x∗).
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Second order necessary condition(cont’d)
Proof

Since xk is an unconstrained minimum of min Pk(x), the following matrix

∇2Pk(x
k) = ∇2f (xk) + k

m∑
i=1

hi (x
k)∇2hi (x

k) + kDh(xk)TDh(xk) + αI , (7)

is positive semidefinite for all suff large k and α > 0.
Take any z such that Dh(x∗)z = 0 and let zk be the projection of z onto the
nullspace of Dh(xk):

zk = z − Dh(xk)T
(
Dh(xk)Dh(xk)T

)−1

Dh(xk)z . (8)
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Second order necessary condition(cont’d)
Proof(cont’d)

Since Dh(xk)zk = 0, and ∇2Pk(x
k) is PSD, we have

0 ≤ (zk)T∇2Pk(x
k)zk = (zk)T

(
∇2f (xk) + k

m∑
i=1

hi (x
k)∇2hi (x

k)
)
zk + α‖zk‖2.

Since khi (x
k) → λ∗i , and from (8) together with xk → x∗ and Dh(x∗)z = 0, we

have zk → z , we get

0 ≤ zT
(
∇2f (x∗) +

m∑
i=1

λ∗i ∇2hi (x
∗)
)
z + α‖z‖2.

By taking α arbitrarily close to 0, we get the second order condition.
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Second order sufficient condition

Theorem

Consider minimization min{f (x) : h(x) = 0} where h : Rn → Rp, f and hi are
twice differ’ble. Assume x∗ ∈ Rn and λ∗ ∈ Rp satisfy

∇λL(x∗, λ∗) = 0, ∇xL(x∗, λ∗) = 0

zT
(
∇2f0(x

∗) +
∑p

i=1 λ∗i ∇2hi (x
∗)
)
z > 0,∀ z 6= 0 : ∇hi (x

∗)T z = 0.

Then x∗ is a strict local minimum of f . In fact, there is γ > 0, and ε > 0 such
that

f (x∗) + γ
2
‖x − x∗‖2 ≤ f (x), ∀x : h(x) = 0 and‖x − x∗‖ < ε.

Proof Omitted.
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First order necessary condition

Theorem

Assume x∗ is a local minimum of min{f0(x) : f1(x) ≤ 0, . . ., fm(x) ≤ 0,
h1(x) = 0, . . ., hp(x) = 0} where fi and hi are differ’ble. Assume x∗ is regular.
Then there are unique λ∗ ≥ 0 and ν∗ such that

1 Dual feasibility: λ∗ ≥ 0,

2 Complementary slackness: λ∗i fi (x
∗) = 0, i = 1, · · · , m,

3 Gradient of Lagrangian with respect to x vanishes at x∗ when λ = λ∗

and ν = ν∗:

∇f0(x
∗) +

m∑
i=1

λ∗i ∇fi (x
∗) +

p∑
j=1

ν∗j ∇hj(x
∗) = 0.
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Proof

It suffices to show that λ∗ ≥ 0. (Why?) Introduce f +
j (x) = max{0, fj(x)} and

Pk(x) = f0(x) +
k

2
‖h(x)‖2

2 +
k

2

m∑
i=1

(f +
i (x))2 +

α

2
‖x − x∗‖2

2,

where α is a positive scalar. Notice that (f +
i (x))2 is differentiable with gradient

2f +
i (x)∇fi (x). A similar argument we used for equality case, the unique

multipliers are given by

ν∗i = limk→∞ khi (x
k), i = 1, . . . , p,

λ∗i = limk→∞ kf +
i (xk), i = 1, . . . , m.

Since f +
i (xk) ≥ 0, we get λ∗i ≥ 0.

The regularity of x∗ is quite strong assumption for inequality constraints. It can

be replaced by a weaker assumption.
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Second order necessary condition

Theorem

Assume x∗ is a local minimum of min{f0(x) : f1(x) ≤ 0, . . ., fm(x) ≤ 0,
h1(x) = 0, . . ., hp(x) = 0} where fi and hi are twice differ’ble. Let A(x∗) be
the set of active constraints at x∗. Then the unique Lagrangian multipliers
λ∗ ≥ 0 and ν∗ satisfying the first order condition also satisfy

zT
(
∇2f0(x

∗) +
∑p

i=1 λ∗i ∇2fi (x
∗) +

∑p
i=1 ν∗i ∇2hi (x

∗)
)
z ≥ 0,

∀ z : ∇fi (x
∗)T z = 0, i ∈ A(x∗) and ∇hi (x

∗)T z = 0, i = 1, . . . , p.

Proof From second order necessary conditions for equality const case.
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Second order sufficient condition

Theorem

Consider minimization min{f0(x) : f1(x) ≤ 0, . . ., fm(x) ≤ 0, h1(x) = 0, . . .,
hp(x) = 0} where fi and hi are twice differ’ble. Let x∗ ∈ Rn, λ∗, and µ∗ satisfy

∇λL(x∗, λ∗) = 0, ∇xL(x∗, λ∗) = 0,

fi (x
∗) ≤ 0, i = 1, . . . , m,

hi (x
∗) = 0, i = 1, . . . , p,

µ∗i ≥ 0, i = 1, . . . , p, µ∗i = 0,∀i ∈ A(x∗),

zT
(
∇2f0(x

∗) +
∑p

i=1 λ∗i ∇2fi (x
∗) +

∑p
i=1 ν∗i ∇2hi (x

∗)
)
z > 0,

∀ z 6= 0 : ∇fi (x
∗)T z = 0, i ∈ A(x∗) and ∇hi (x

∗)T z = 0, i = 1, . . . , p.

Then x∗ is a strict local minimum.

Proof Omitted.
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KKT conditions

The following four conditions are called KKT conditions (for a problem with
differentiable fi and hi ):

1 Primal feasibility: fi (x) ≤ 0, i = 1, · · · , m; hj(x) = 0, j = 1, · · · , p,

2 Dual feasibility: λ ≥ 0,

3 Complementary slackness: λi fi (x) = 0, i = 1, · · · , m,

4 Gradient of Lagrangian with respect to x vanishes:

∇f0(x) +
m∑

i=1

λi∇fi (x) +

p∑
j=1

νj∇hj(x) = 0.

We have seen that under regularity assumption KKT conditions are necessary
for a local minimum.
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KKT conditions are sufficient for convex optimization.

Proposition

Suppose optimization min{f0(x) : f1(x) ≤ 0, . . ., fm(x) ≤ 0, h1(x) = 0, . . .,
hp(x) = 0} is convex. If x̃ and (λ̃, ν̃) satisfy KKT conditions, then they are
optimal.

Proof From convexity and the 4th condition,

L(x̃ , λ̃, ν̃) := f0(x̃) +
m∑

i=1

λ̃i fi (x̃) +

p∑
j=1

ν̃jhj(x̃) ≤ L(x , λ̃, ν̃), ∀x .

Since λ̃ ≥ 0,
L(x , λ̃, ν̃) ≤ f0(x), ∀ feasible x .

Thus, L(x̃ , λ̃, ν̃) ≤ p∗. But, from complementary slackness, f0(x̃) = L(x̃ , λ̃, ν̃)

and hence, f0(x̃) = p∗.
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Thus under the regularity assumption KKT conditions are necessary and
sufficient for optimality. The regularity can be replaced by a weaker form of
constraint qualification such as Slater’s condition.

Corollary

Suppose there is feasible solution x̄ such that fi (x̄) < 0 ∀i . Then x is optimal
for a convex optimization iff there exist λ, ν satisfying KKT conditions with x.
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Consider equality constrained convex quadratic minimization

min (1/2)xTPx + qT x + r
s.t. Ax = b,

where P ∈ Sn
+. KKT conditions are Ax∗ = b, Px∗ + q + AT ν∗ = 0, or[

P AT

A 0

] [
x∗

ν∗

]
=

[
−q
b

]
.
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Examples(cont’d)

Consider following optimization:

min −
∑n

i=1 log(αi + xi )
s.t. x ≥ 0, 1T x = 1,

where αi > 0. KKT conditions for this problem are

x∗ ≥ 0, 1T x∗ = 1, λ∗ ≥ 0, λ∗i x
∗
i = 0, i = 1, · · · , n,

−1/(αi + x∗i )− λ∗i + ν∗ = 0, i = 1, · · · , n.

Solving the equations, we have

x∗i =

{
1/ν∗ − αi , ν∗ ≤ 1/αi

0 ν∗ ≥ 1/αi
, or x∗i = max{0, 1/ν∗ − αi}.

Since 1T x∗ = 1 , we can obtain

n∑
i=1

max{0, 1/ν∗ − αi} = 1.
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Examples(cont’d)

This solution method is called water-filling for the following reason:

αi is ground level above patch i .

1/ν∗ is target depth for flood.

Total amount of water used is
∑

i max{0, 1/ν∗ − αi}.
We increase flood level until we have used total amount of water equal to
one. Then, final depth of water above patch i is x∗i .
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Exercises

1. Use Lagrangian to solve the followings.
(a) min {‖x‖2 :

∑n
i=1 xi = 1}.

(b) min {
∑n

i=1 xi : ‖x‖2 = 1}.
(c) min {‖x‖2 : xTQx = 1}, where Q is PD.

2. Let x∗ be an unconstrained local minimum of f : Rn → R. Also assume f is
twice differentiable in an open set S . Then ∇2f (x∗) is positive semidefinite.

3. Solve the following problem

min(x − a)2 + (y − b)2 + xy

s.t. 0 ≤ x ≤ 1, 0 ≤ x ≤ 1,

for all possible values of a and b.
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Exercises

4. Consider

min−(x1x2 + x2x3 + x3x1)

s.t. x1 + x2 + x3 = 3.

Show x∗ = (1, 1, 1)T is a strict local minimum.

5. Verify the Schwartz inequality, xT y ≤ ‖x‖‖y‖ by solving the problem
max{xT y : ‖x‖2 = 1, ; ‖y‖2 = 1}.
Similarly, for any PD matrix Q, prove

(xT y)2 ≤ (xT y)2 ≤ (xTQx)(yTQ−1y)

by solving min{yT x : xTQx ≤ 1}.
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Exercises

6. Show if the constraints are linear, the regularity assumption is not needed
for the second order necessary conditions except that the multipliers are not
necessarily unique.

7. Consider convex optimization min{f0(x) : fi (x) ≤ 0, i = 1, . . . , m}. Assume
x∗ satisfies KKT conditions. Show that

∇f0(x
∗)T (x − x∗) ≥ 0,

for all feasible solution x .
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