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Unconstrained minimization

Consider
min f (x) (1)

where f : Rn → R is convex and twice continuously differentiable (on an open
domain).

Assumption

There exists an optimal point x∗ such that p∗ = f (x∗) = infx f (x).

Since f is differentiable and convex, a point x∗ is optimal if and only if

∇f (x∗) = 0. (2)

Thus, solving the unconstrained minimization problem (1) is the same as
finding a solution of (2), which is a set of n equations in the n variables
x1, . . . , xn.
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Unconstrained minimization(cont’d)

We can find a solution of (1)

by either analytically solving equation (2), or
using an iterative algorithm.

An iterative algorithm computes a sequence of points
x (0), x (1), · · · ∈ domf with

f (x (k)) → p∗ as k →∞.

The iterative algorithms normally require a suitable starting point x (0)

such that

x (0) ∈ domf , and
S = {x ∈ domf |f (x) ≤ f (x (0))} is closed.
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Examples: Quadratic min. and least-squares

Example (General convex quadratic minimization problem)

min 1
2
xTPx + qT x + r , (3)

where P ∈ Sn
+, q ∈ Rn, and r ∈ R.

When P � 0, x∗ = −P−1q.

Otherwise, any x∗ satisfying Px∗ = −q is an optimal solution.

If Px = −q does not have a solution, (3) is unbounded below.

Example (Least-square problem)

min ‖Ax − b‖2
2 = xT (ATA)x − 2(ATb)T x + bTb. (4)

The optimality conditions ATAx∗ = ATb are called the normal equations of the
least-square problem.
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Examples: Unconstrained geometric programming

Example (Unconstrained geometric program in convex form)

min f (x) = log(
∑m

i=1 exp(aT
i x + bi )). (5)

The optimality condition is

∇f (x∗) =
1∑m

i=1 exp(aT
i x + bi )

m∑
i=1

exp(aT
i x + bi )ai = 0.

There may be no analytical solution in general. Then we must resort to
an iterative algorithm.
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Examples: Analytic center of linear inequality and linear matrix inequality

Example (Logarithmic barrier f (x) for aT
i x ≤ bi )

f (x) = −
m∑

i=1

log(bi − aT
i x), domf = {x |aT

i x < bi , i = 1, . . . , m}.

The solution of the problem min f (x) is called the analytic center of the
inequalities. Domain domf = {x : aT

i x < bi , i = 1, . . . , m}. If initial point x (0)

is in the domain, S = {x : f (x) ≤ f (x (0))} is closed. For S is contained in the
union of the closed sets {x : bi − aT

i x ≥ δ} (⊆ domf ) for some δ > 0.

Example (Logarithmic barrier f (x) for LMI F (x) � 0)

f (x) = log detF (x)−1, domf = {x |F (x) = x0F0 + x1F1 + · · ·+ xnFn � 0}

The solution of the problem min f (x) is called the analytic center of the LMI.
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Strong convexity and implications

In much of this chapter, we rely on the following stronger assumption.

Definition

A function f is strongly convex on S if there exists an m > 0 such that

∇2f (x) � mI

for all x ∈ S.

Suppose f is strongly convex on S . Then, since

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x) for some z ∈ [x , y ],

we have

f (y) ≥ f (x) +∇f (x)T (y − x) +
m

2
‖y − x‖2

2, ∀ x , y ∈ S . (6)

When m = 0, it reduces to the first order condition for convexity.
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Strong convexity and implications: Upper bound on f (x)− p∗

Right hand side of (6), convex quadratic function of y , is minimized at
ỹ = x − 1

m
∇f (x).

f (y) ≥ f (x) +∇f (x)T (y − x) + m
2
‖y − x‖2

2

≥ f (x) +∇f (x)T (ỹ − x) + m
2
‖ỹ − x‖2

2

= f (x)− 1
2m
‖∇f (x)‖2

2.

Taking y = x∗, we get:

Theorem

Suboptimality of the point x, f (x)− p∗ ≤ 1
2m
‖∇f (x)‖2

2.

Hence if gradient is small enough, then the point is nearly optimal:

‖∇f (x)‖2 ≤ (2mε)1/2 ⇒ f (x)− p∗ ≤ ε.
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Strong convexity and implications: Upper bound on ‖x − x∗‖2

From (6) with y = x∗, for any x

p∗ = f (x∗) ≥ f (x) +∇f (x)T (x∗ − x) + m
2
‖x∗ − x‖2

2

≥ f (x)− ‖∇f (x)‖2‖x∗ − x‖2 + m
2
‖x∗ − x‖2

2.

Since f (x) ≥ p∗, ‖∇f (x)‖2‖x∗ − x‖2 ≥ m
2
‖x∗ − x‖2

2.

Theorem

‖x∗ − x‖2 ≤ 2
m
‖∇f (x)‖2.

This implies optimal point x∗ is unique.
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Strong convexity and implications: Lower bound on f (x)− p∗

(6) implies the sublevel sets contained in S are bounded, so in particular,
S is bounded. (If we let x = x∗, f (y) ≥ p∗ + m

2
‖y − x∗‖2. Thus if

f (y) ≤ α ≤ f (x (0)), ‖y − x∗‖2 ≤ some constant.)

Then, the maximum eigenvalue of ∇2f (x), which is a continuous function
of x on the compact set S , achieves its maximum M on S .

This means that ∇2f (x) � MI for all x ∈ S .

f (y) ≤ f (x) +∇f (x)T (y − x) +
M

2
‖y − x‖2

2, ∀ x , y ∈ S . (7)

Theorem

1
2M
‖∇f (x)‖2

2 ≤ f (x)− p∗.

Proof Similar to the proof of lower bound.
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Strong convexity and implications: Condition number of ∇2f (x)

Definition

The condition number of ∇2f (x) is the ratio of its largest eigenvalue to its
smallest eigenvalue.

From the strong convexity, mI � ∇2f (x) � MI , ∀ x ∈ S , the condition number

of ∇2f (x) is bounded by M
m

.
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Strong convexity and implications: Condition number of convex sets

Definition

The width of a convex set C, in the direction q, ‖q‖2 = 1, as

W (C , q) = sup
z∈C

qT z − inf
z∈C

qT z .

The minimum width and the maximum width of C are given by

Wmin := inf
‖q‖2=1

W (C , q), Wmax := sup
‖q‖2=1

W (C , q)

The condition number of C is cond(C) =
W 2

max

W 2
min

.
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Strong convexity and implications: Condition number of α-sublevel sets

Suppose mI � ∇2f (x) � MI and Cα := {x |f (x) ≤ α} where p∗ < α ≤ f (x (0)).

From (6) and (7) with x = x∗, we get

p∗ + (m/2)‖y − x∗‖2 ≤ f (y) ≤ p∗ + (M/2)‖y − x∗‖2
2.

This implies Binner ⊆ Cα ⊆ Boutput where

Binner := {y |‖y − x∗‖2 ≤ (2(α− p∗)/M)1/2

Bouter := {y |‖y − x∗‖2 ≤ (2(α− p∗)/m)1/2

For y ∈ Binner ⇒ f (y) ≤ p∗ + M
2
‖y − x∗‖2

2 ≤ α; and f (y) ≤ α ⇒
p∗ + (m/2)‖y − x∗‖2 ≤ α ⇒ y ∈ Bouter.

Thus, min width of Cα ≥ (2(α− p∗/M)1/2 and max width of Cα ≤
(2(α− p∗)/m)1/2 and hence cond(Cα) ≤ M

m
.
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Iterative algorithms and descent method

In iterative algorithms,

we generate a minimizing sequence x (k), k = 1, 2, . . .

x (k+1) = x (k) + t(k)∆x (k), t(k) > 0,

where, ∆x (k) is called search direction at iteration k, and

t(k) step size or step length at iteration k.

In descent method,

sequence x (k), k = 1, 2, . . . satisfies

f (x (k+1)) < f (x (k)),

which implies for all k, x (k) ∈ S , where S is the initial sublevel set.
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Iterative algorithms and descent method

Proposition

If ∆x (k) is a search direction for a descent method,

∇f (x (k))T∆x (k) < 0.

Proof Since f is a convex function,

f (x (k+1)) ≥ f (x (k)) + t(k)∇f (x (k))T∆x (k).

By assumption f (x (k+1))− f (x (k)) < 0, and hence

t(k)∇f (x (k))T∆x (k) < 0.

Since t(k) > 0,
∇f (x (k))T∆x (k) < 0.
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General descent method

Algorithm

given a starting point x ∈ domf .

repeat

1. Determine a descent direction ∆x.
2. Line search. Choose a step size t > 0.
3. Update. x := x + t∆x.

until stopping criterion is satisfied.
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Exact line search

In exact line search,

t is chosen to minimize f along the ray {x + t∆x |t ≥ 0}:

t = argmins≥0f (x + s∆x). (8)

An exact line search is used when the computation (8) is marginal to
computation of the search direction itself.

Remark

Most line searches used in practice are inexact: the step length is chosen to
approximately minimize f along the ray {x + t∆x |t ≥ 0}, or to reduce f
enough.
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Backtracking line search

Algorithm

given descent direction ∆x for f at x ∈ domf , α ∈ (0, 0.5), β ∈ (0, 1).

t := 1.

while f (x + t∆x) > f (x) + αt∇f (x)T∆x,

t := βt.

Since ∆x is a descent direction, we have ∇f (x)T∆x < 0. Thus, for small
enough t we have

f (x + t∆x) ≈ f (x) + t∇f (x)T∆x < f (x) + αt∇f (x)T∆x ,

which implies the backtracking line search eventually terminates.
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Backtracking line search(cont’d)

The backtracking exit inequality f (x + t∆x) ≤ f (x) + αt∇f (x)T∆x
holds for t ≥ 0 in an interval (0, t0].

It follows that the backtracking line search stops with a step length t that
satisfies

t = 1, or t ∈ (βt0, t0] ⇒ t ≥ min{1, βt0}.
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A natural choice for search direction is the negative gradient ∆x = −∇f (x),
most-decreasing direction of f at x .

Algorithm (Gradient descent method)

given a starting point x ∈ domf .

repeat

1. ∆x = −∇f (x).
2. Line search. Choose a step size t > 0 via exact or

backtracking.
3. Update. x := x + t∆x.

until stopping criterion is satisfied. (usually, ‖∇f (x)‖2 ≤ η(> 0).)
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Convergence analysis

Assume f is strongly convex on S and hence ∃ m and M s.t. mI �
∇2f (x) � MI ∀x ∈ S .

Define f̃ : R → R by f̃ (t) = f (x − t∇f (x)).

From f (y) ≤ f (x) +∇f (x)T (y − x) + M
2
‖y − x‖2

2 with y = x − t∇f (x),

f̃ (t) ≤ f (x)− t‖∇f (x)‖2
2 +

Mt2

2
‖∇f (x)‖2

2.
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Analysis for exact line search

Suppose the exact line search is used, and let t∗ be the minimizer of f̃ .

f (x)− t‖∇f (x)‖2
2 + Mt2

2
‖∇f (x)‖2

2 is minimized at t = 1
M

and has
minimum value f (x)− 1

2M
‖∇f (x)‖2

2.

Thus,

f (x − t∗∇f (x)) ≤ f (x)− 1

2M
‖∇f (x)‖2

2.

Subtracting p∗ from both sides and combining with

‖∇f (x)‖2
2 ≥ 2m(f (x)− p∗),

we have
f (x − t∗∇f (x))− p∗ ≤ (1− m

M
)(f (x)− p∗).

It implies f (x (k))− p∗ ≤ (1− m
M

)k(f (x (0))− p∗), and hence f (x (k))
converges to p∗ as k →∞.
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Analysis for exact line search(cont’d)

Consider f (x (k))− p∗ ≤ (1− m
M

)k(f (x (0) − p∗),

To obtain f (x (k))− p∗ ≤ ε,

(1− m
M

)k(f (x (0))− p∗) ≤ ε

⇔ (1− m
M

)k ≤ ε

f (x(0))−p∗

⇔ k ≤
log ε

f (x(0))−p∗

log(1− m
M )

=
log

f (x(0))−p∗
ε

− log(1− m
M )

The numerator implies that the number of iterations depends on how
good the initial point is, and what the final required accuracy is.

The denominator implies that the number of iterations depends on the
condition number, M/m of ∇2f (x). (Note − log(1−m/M) ≈ m/M.)
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Analysis for backtracking line search

Suppose the backtracking line search is used.

Lemma

If 0 ≤ t ≤ 1/M and α < 1/2, then f̃ (t) ≤ f (x)− αt‖∇f (x)‖2
2.

Proof Since 0 ≤ t ≤ 1/M, −t + Mt2

2
≤ −t/2. Then, for 0 ≤ t ≤ 1/M and

α < 1/2,

f̃ (t) ≤ f (x)− t‖∇f (x)‖2
2 + Mt2

2
‖∇f (x)‖2

2

≤ f (x)− t
2
‖∇f (x)‖2

2

≤ f (x)− αt‖∇f (x)‖2
2.

Thus, when we use backtracking line search with t0 := 1, line search terminates
with either t = 1 or t ≥ β/M.
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Steepest descent direction

From first-order Taylor approximation of f (x + v) around x ,

f (x + v) ≈ f (x) +∇f (x)T v .

directional derivative ∇f (x)T v gives an approximate change in f for a small v ,
a descent direction if ∇f (x)T v < 0.

Definition (Normalized steepest descent direction)

∆xnsd := argmin{∇f (x)T v |‖v‖ = 1}.

A search direction of unit norm giving largest decrease in the linear
approximation of f .
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We use as search direction an unnormalized steepest descent direction:

∆xsd = ‖∇f (x)‖∗∆xnsd,

where, ‖ · ‖∗ is dual norm of ‖ · ‖: ‖x‖∗ = max{xT y : ‖y‖ = 1}. (For instance, dual

norms of ‖ · ‖2, ‖ · ‖P , and ‖ · ‖1 are resp., ‖ · ‖2, ‖ · ‖
P−1 , and ‖ · ‖∞.)

Also from definition,

∇f (x)T∆xnsd = −‖∇f (x)‖2
∗.

Algorithm (Steepest descent method)

given a starting point x ∈ domf .

repeat

1. Compute steepest descent direction ∆xsd.
2. Line search. Choose a step size t > 0 via backtracking or exact

line search.
3. Update. x := x + t∆xsd.

until stopping criterion is satisfied.
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Steepest descent for various norms

When ‖ · ‖2 is used, ∆xsd = −∇f (x).

When a quadratic norm, ‖z‖P = (zTPz)1/2 = ‖P1/2z‖2, P ∈ Sn
++ is used,

∆xnsd = −
(
∇f (x)TP−1∇f (x)

)−1/2

P−1∇f (x), (9)

For l1-norm,
∆xnsd = argmin{∇f (x)T v |‖v‖1 ≤ 1}.

Let i be any index for which ‖∇f (x)‖∞ = |(∇f (x))i |. Then, a
normalized steepest descent direction for the l1-norm is given by

∆xnsd = −sign(
∂f (x)

∂xi
)ei , (10)

where ei is the ith vector of standard basis.
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Convergence analysis

We assume f is strongly convex on the initial sublevel set S , and hence
∇2f (x) � MI . Then,

f (x + t∆xsd) ≤ f (x) + t∇f (x)T∆xsd +
M‖xsd‖

2
2

2
t2

≤ f (x) + t∇f (x)T∆xsd +
M‖xsd‖

2
∗

2γ2 t2

= f (x)− t‖∇f (x)‖2
∗ + M

2γ2 t2‖∇f (x)‖2
∗.

where γ ∈ (0, 1] and ‖x‖∗ ≥ γ‖x‖2 for all x .

Note that the upper bound f (x)− t‖∇f (x)‖2
∗ + M

2γ2 t2‖∇f (x)‖2
∗ is

minimized at t̂ = γ2/M.
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Convergence analysis(cont’d)

When backtracking line search is used,

since α < 1/2 and ∇f (x)T∆xsd = −‖∇f (x)‖2
∗,

f (x + t̂∆xsd) ≤ f (x)− γ2

2M
‖∇f (x)‖2 ≤ f (x) +

αγ2

M
∇f (x)T∆xsd

satisfies the exit condition for backtracking line search.

Thus, line search returns a step size t ≥ min{1, βγ2/M}, and we have

f (x + t∆xsd) ≤ f (x)− αt‖∇f (x)‖2(Line search exit criterion)
≤ f (x)− α min{1, βγ2/M}‖∇f (x)‖2

≤ f (x)− αγ2 min{1, βγ2/M}‖∇f (x)‖2
2
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Convergence analysis(cont’d)

This implies that

f (x + t∆xsd)− p∗ ≤ f (x)− p∗ − αγ2 min{1, βγ2/M}‖∇f (x)‖2
2

But, from f (x)− p∗ ≤ 1
2m
‖∇f (x)‖2

2, or −‖∇f (x)‖2
2 ≤ −2m(f (x)− p∗),

we get

f (x + t∆xsd)− p∗ ≤ c(f (x)− p∗),

where c = 1− 2mαγ2 min{1, βγ2/M} < 1.

Hence f (x (k))− p∗ ≤ ck(f (x (0))− p∗).
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Definition (Newton step)

For x ∈ domf , the vector

∆xnt := −∇2f (x)−1∇f (x)

is called the Newton step for f at x.

If ∇2f (x) � 0,

∇f (x)T∆xnt = −∇f (x)T∇2f (x)−1∇f (x) < 0,

unless ∇f (x) = 0.

This implies that the Newton step is a descent direction.
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Some interpretations

Consider the second-order Taylor approximation f̂ of f at x is

f̂ (v) := f (x) +∇f (x)T v +
1

2
vT∇2f (x)v ,

which is a convex quadratic function of v .

Then f̂ is minimized when v = ∆xnt as we have ∇f̂ (∆xnt) = 0.

Newton step is also the steepest descent direction at x for the quadratic
norm defined by ∇2f (x),

‖u‖∇2f (x = (uT∇2f (x)u)
1
2 .

Linearizing optimality condition ∇f (x∗) = 0 around x , we get

∇f (x + v) ≈ ∇f (x) +∇2f (x)v = 0.

Thus x + ∆xnt is the solution of the linear approximation of optimality
condition.
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Algorithm (Newton’s method)

given a starting point x ∈ domf , tolerance ε > 0.

repeat

1. Compute the Newton step and decrement:
∆xnt := −∇2f (x)−1∇f (x); λ2 := ∇f (x)T∇2f (x)−1∇f (x).

2. Stopping criterion. quit if λ2/2 ≤ ε.
3. Line search. Choose a step size t > 0 via backtracking line search.

4. Update. x := x + t∆xsd.

Optimization Lab. Unconstrained minimization A supplementary note to Chapter 9 of Convex Optimization by S. Boyd and L. Vandenberghe



Preliminaries
Descent methods
Newton’s method

Newton step
Newton’s method

Convergence analysis

We assume that

(i) f is twice continuously differentiable,

(ii) strongly convex with constants m and M, i.e.,

mI � ∇2f (x) � MI for x ∈ S , and

(iii) the Hessian of f is Lipschitz continuous on S with constant L, i.e.,

‖∇2f (x)−∇2f (y)‖2 ≤ L‖x − y‖2, ∀x , y ∈ S .

Note that L = 0 is valid for a quadratic function. Thus, L measures how well f
can be approximated by a quadratic model. Intuition suggests that Newton’s
method will work very well for a small L.
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Outline of convergence proof

We can prove that there are numbers 0 < η ≤ m2/L and γ > 0 such that

(i) if ‖∇f (x (k))‖2 ≥ η, then f (x (k+1))− f (x (k)) ≤ −γ, and

(ii) if ‖∇f (x (k))‖2 < η, then the backtracking line search selects t(k) = 1, and

L
2m2 ‖∇f (x (k+1))‖2 ≤

(
L

2m2 ‖∇f (x (k))‖2

)2

.

From (i), the number of steps satisfying ‖∇f (x (k))‖2 ≥ η cannot exceed
f (x(0))−p∗

γ
since f decreases by at least γ at each iteration.

From (ii), if ‖∇f (x (k))‖2 < η, then ‖∇f (x (k+1))‖2 ≤ L
2m2 ‖∇f (x (k))‖2

2 ≤
L

2m2 η2 which is ≤ η since η ≤ m2/L.
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Outline of convergence proof(cont’d)

Thus once ‖∇f (x (k))‖2 < η, then ‖∇f (x (l))‖2 < η and

L

2m2
‖∇f (x (l+1))‖2 ≤ (

L

2m2
‖∇f (x (l))‖2)

2, ∀l ≥ k,

called quadratic convergence.

Applying this inequality recursively,

L

2m2
‖∇f (x (l))‖2 ≤

(
L

2m2
‖∇f (x (k))‖2

)2l−k

≤
(

1

2

)2l−k

.

and hence

f (x (l))− p∗ ≤ 1

2m
‖∇f (x (l))‖2

2 ≤
2m3

L2

(
1

2

)2l−k+1

.
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Outline of convergence proof(cont’d)

The iterations in Newton’s method fall into two stages:

damped Newton phase where ‖∇f (x)‖2 > η and algorithm can choose
t < 1, and

pure Newton phase where ‖∇f (x)‖2 ≤ η and hence algorithm choose full
step size, t = 1.

From the previous observations, the number of iterations

from damped Newton phase is ≤ (f (x (0))− p∗)/γ, and

from pure Newton phase, is given by ε ≤ 2m3

L2 ( 1
2
)2l−k+1

, and hence
bounded by

log2 log2(ε0/ε), where ε0 = 2m3/L2.

Thus, total number of iterations until f (x)− p∗ ≤ ε is bounded by

(f (x (0))− p∗)/γ + log2 log2(ε0/ε) ≈ (f (x (0))− p∗)/γ + 6.
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Homework

9.1, 9.3, 9.5, 9.7, 9.10

Additional Problems
1. Verify (9) and (10).

2. Verify that dual norms of ‖ · ‖2, ‖ · ‖P , and ‖ · ‖1 are resp., ‖ · ‖2, ‖ · ‖P−1 ,
and ‖ · ‖∞.

3. Newton step is the steepest descent direction at x for the quadratic norm
defined by ∇2f (x).
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