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Preliminaries

Unconstrained minimization

Consider

min  f(x) (1)
where f : R” — R is convex and twice continuously differentiable (on an open
domain).

There exists an optimal point x* such that p* = f(x*) = inf. f(x).

Since f is differentiable and convex, a point x™ is optimal if and only if
Vi(x*)=0. (2)

Thus, solving the unconstrained minimization problem (1) is the same as
finding a solution of (2), which is a set of n equations in the n variables

X1y .-y Xn-
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Preliminaries

Unconstrained minimization(cont'd)

@ We can find a solution of (1)

o by either analytically solving equation (2), or
e using an iterative algorithm.

@ An iterative algorithm computes a sequence of points
X(O),x(l), --- € domf with
F(x) = p* as k — oco.
@ The iterative algorithms normally require a suitable starting point x(©
such that

o x© € domf, and
o S ={x & domfl|f(x) < f(x{?)} is closed.
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Preliminaries

Examples: Quadratic min. and least-squares

Example (General convex quadratic minimization problem)
min %XTPX +q " x+r, 3)
where P € ST ,q € R", and r € R.
@ When P~ 0, x* = —P'q.

@ Otherwise, any x* satisfying Px* = —q is an optimal solution.

@ If Px = —q does not have a solution, (3) is unbounded below.

Example (Least-square problem)

min  ||JAx — b||3 = x"(ATA)x —2(ATb)"x + b"b. (4)

The optimality conditions A" Ax* = AT b are called the normal equations of the
least-square problem.
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Preliminaries

Examples: Unconstrained geometric programming

Example (Unconstrained geometric program in convex form)
min  f(x) = log(3_7; exp(a x + br)). (5)
The optimality condition is

1
Sor exp(al x + bi

Vi(x*) = j Zexp(a,-Terb,-)a,- =0.
i=1

@ There may be no analytical solution in general. Then we must resort to
an iterative algorithm.
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Preliminaries

Examples: Analytic center of linear inequality and linear matrix inequality

Example (Logarithmic barrier f(x) for a/ x < b;)

f(x)=— Z log(b; — aj x), domf = {x|a/x < bi, i=1,...,m}.
i=1

The solution of the problem min f(x) is called the analytic center of the
inequalities. Domain domf = {x : a] x < b;, i =1,..., m}. If initial point x©)
is in the domain, S = {x : f(x) < f(x9)} is closed. For S is contained in the
union of the closed sets {x : b — a} x > 6} (C domf ) for some § > 0.

Example (Logarithmic barrier f(x) for LMI F(x) = 0)

f(x) = logdet F(x)™", domf = {x|F(x) = xoFo + x1F1 + - - + xoF, = 0}

The solution of the problem min f(x) is called the analytic center of the LMI.
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Preliminaries

Strong convexity and implications

In much of this chapter, we rely on the following stronger assumption.

Definition

A function f is strongly convex on S if there exists an m > 0 such that

V2f(x) = ml

forall x € S.

Suppose f is strongly convex on S. Then, since

F(y) = )+ VF)T(y =) + 5y = x) T ()(y — x) for some z € [x,y],
we have
f(¥) 2 F()+VFC) (=) + Fly =3 Yy es. (6)

When m = 0, it reduces to the first order condition for convexity.
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Preliminaries

*

Strong convexity and implications: Upper bound on f(x) — p

@ Right hand side of (6), convex quadratic function of y, is minimized at
¥ =x— LVf(x).
Fly) >f0)+ V) (y—x)+ Zlly — x5
> £+ VF0)T(5 = x) + 317 - xI3
= f(x) = 5 IVF(3)Il2:

Taking y = x*, we get:

Suboptimality of the point x, f(x) — p* < = || Vf(x)|3.

72m

Hence if gradient is small enough, then the point is nearly optimal:

IVF(x)|l2 < (2me)'/* = f(x) — p* <.
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Preliminaries

Strong convexity and implications: Upper bound on ||x — x*||2

@ From (6) with y = x*, for any x

pr=1f(x") () + V()T (x" —x) + Fllx" — x|3
> F(x) = IVF)lllx™ = xll2 + llx™ — x]I3.

@ Since f(x) > p*, |

VA 2llx” = x|l > Flx" — x|I3.

Ix* = xlla < ZIVF)lo-

This implies optimal point x™ is unique.
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Preliminaries

*

Strong convexity and implications: Lower bound on f(x) — p

@ (6) implies the sublevel sets contained in S are bounded, so in particular,
S is bounded. (If we let x = x*, f(y) > p* + Z|ly — x*||°. Thus if
fly) < a < f(x9), [ly — x*||> < some constant.)

@ Then, the maximum eigenvalue of V?f(x), which is a continuous function
of x on the compact set S, achieves its maximum M on S.

@ This means that V?f(x) < M/ for all x € S.

F0) < 700+ VT = x) + oIy = x5 Yy es. (@)

sl V()| < f(x) - p*.

Proof Similar to the proof of lower bound. [
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Preliminaries

Strong convexity and implications: Condition number of V2f(x)

Definition
The condition number of Vf(x) is the ratio of its largest eigenvalue to its
smallest eigenvalue.

From the strong convexity, m/ < V2f(x) <X MI,V x € S, the condition number
of V?f(x) is bounded by .
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Preliminaries

Strong convexity and implications: Condition number of convex sets

@ The width of a convex set C, in the direction q, ||qll2 =1, as

W(C, q) = sup q'z—inf gz
zeC zeC

@ The minimum width and the maximum width of C are given by

Wiin := inf W(C,q), Wmax := sup W(C,q)
llqll2=1 qll2=1
@ The condition number of C is cond(C) = %

min
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Preliminaries

Strong convexity and implications: Condition number of a-sublevel sets

Suppose ml < V?f(x) < Ml and C, := {x|f(x) < a} where p* < a < f(x©).

@ From (6) and (7) with x = x™, we get
pr A (m/2)lly —x"|* < F(y) < p" + (M/2)lly — x5

@ This implies Bjner € Ca € Boytput where

Binner == {yllly = x|l < (2(a — P*)/M)ll/i

Bouter := {yllly = x*[l2 < (2(ec = p*)/m)"/
For y € Binper = f(2y) <P+ Flly—x" 3 <aiand fy) < a =
P+ (m/2)|[ly — x*||° < a = y € Boyter-

@ Thus, min width of C, > (2(a — p*/M)*? and max width of C, <
(2(e — p*)/m)*/? and hence cond(C,) < u.
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Introduction

Exact line search
Descent methods Inexact line search

Gradient descent method

Steepest descent method

Iterative algorithms and descent method

In iterative algorithms,

@ we generate a minimizing sequence x®) k= 1,2,...
sk — (k) t(k)Ax(k), HOBS 0,

@ where, Ax™%) is called search direction at iteration k, and

o t¥) step size or step length at iteration k.

In descent method,

@ sequence x0 k= 1,2,... satisfies
fF(x* ) < £(x),

@ which implies for all k, x®) e S, where S is the initial sublevel set.
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Introduction

Exact line search
Descent methods Inexact line search

Gradient descent method

Steepest descent method

Iterative algorithms and descent method

Proposition

If Ax¥) js a search direction for a descent method,

Vf(x(k))TAx(k) <0.

Proof Since f is a convex function,
F(x¥) > F(xM) 4 (BT (N T Ax.
By assumption f(x**1)) — f(x¥)) < 0, and hence
tOv (x9N ax® < 0.

Since t) > 0,
Vi Tax® <0. 0
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Introduction
t line search
Descent methods act line
adient descent method
Steepest descent method

General descent method

Algorithm

given a starting point x € domf.

repeat

1. Determine a descent direction Ax.
2. Line search. Choose a step size t > 0.
3. Update. x := x + tAx.

until stopping criterion is satisfied.
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Introduction

Exact line search
Descent methods Inexact line search

Gradient descent method

Steepest descent method

Exact line search

In exact line search,

@ tis chosen to minimize f along the ray {x + tAx|t > 0}:
t = argming,of (x + sAx). (8)

@ An exact line search is used when the computation (8) is marginal to
computation of the search direction itself.

Most line searches used in practice are inexact: the step length is chosen to
approximately minimize f along the ray {x + tAx|t > 0}, or to reduce f
enough.
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Introduction

Exact line search
Descent methods Inexact line search

Gradient descent method

Steepest descent method

Backtracking line search

Algorithm
given descent direction Ax for f at x € domf, o € (0,0.5), 8 € (0, 1).

t:=1.
while f(x + tAx) > f(x) + atVf(x)" Ax,
t .= St.

Since Ax is a descent direction, we have Vf(x)" Ax < 0. Thus, for small
enough t we have

f(x 4 tAx) = f(x) + tVF(x)T Ax < f(x) + atVF(x)" Ax,

which implies the backtracking line search eventually terminates.
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In iction

Exact line search
Descent methods Inexact line search

Gradient descent method

Steepest descent method

Backtracking line search(cont'd)

\
flo+tAx)
T -
fla) +tV f(o)T Ax g Flx) + atV f(o)T Ax
I t
t=0 to

@ The backtracking exit inequality f(x + tAx) < f(x) + atVF(x)T Ax
holds for t > 0 in an interval (0, to].

@ It follows that the backtracking line search stops with a step length t that
satisfies

t=1, ortée (Bt t] =t >min{l,St}.
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Introduction
Exact line search
Descent methods Inexact line search

Gradient descent method
Steepest descent method

A natural choice for search direction is the negative gradient Ax = —Vf(x),
most-decreasing direction of f at x.

Algorithm (Gradient descent method)

given a starting point x € domf.
repeat
1. Ax = —=Vf(x).
2

Line search. Choose a step size t > 0 via exact or
backtracking.

3. Update. x := x + tAx.

until stopping criterion is satisfied. (usually,

IVE()l2 < n(>0).)
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Introduction

Exact line search
Descent methods Inexact line search

Gradient descent method

Steepest descent method

Convergence analysis

@ Assume f is strongly convex on S and hence 3 m and M s.t. ml =<
V3f(x) X MI ¥x € S.

@ Define f : R — R by f(t) = f(x — tVf(x)).
@ From f(y) < f(x) + VF(x)"(y — x) + 2|y — x||3 with y = x — tVf(x),

F(6) < £ — VA1 + M 97003

Optimization Lab. Unconstrained minimization A supplementary note to Chapter 9



Introduction

Exact line search
Descent methods Inexact line search

Gradient descent method

Steepest descent method

Analysis for exact line search

Suppose the exact line search is used, and let t* be the minimizer of f.

0 f(x) — t|VFA(x)|3 + M2||VF(x)|3 is minimized at t = £ and has
minimum value f(x) — 55 || V£ (x)]}5.

@ Thus, )
—t < - 3.
F(x— £°VF(x)) < F(x) — I VFC)B
@ Subtracting p* from both sides and combining with

IVF()5 > 2m(f(x) = p),

we have

Flx— 'VF(x)) = p" < (1= 7)(F(x) = p").

o It implies f(x*) — p* < (1 — 2)*(f(x\¥) — p*), and hence f(x*))
converges to p* as k — oo.
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Exact line search
Descent methods Inexact line search

Gradient descent method

Steepest descent method

Analysis for exact line search(cont’d)

Consider f(x®) — p* < (1 — %)k(f(x(o) —p*),
@ To obtain f(x¥) —p

IA
<('7%

k
= (1 %) S f(x(o)e)—p*
log —m5y— log L) =p*
< f(x(0))—p _ log <
R e B )

@ The numerator implies that the number of iterations depends on how
good the initial point is, and what the final required accuracy is.

@ The denominator implies that the number of iterations depends on the
condition number, M/m of V?f(x). (Note —log(1 — m/M) ~ m/M.)
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Introduction

Exact line search
Descent methods Inexact line search

Gradient descent method

Steepest descent method

Analysis for backtracking line search

Suppose the backtracking line search is used.

IfO<t<1/M and a < 1/2, then f(t) < f(x) — at||VF(x)|3.

Proof Since 0 <t <1/M, —t + Msz < —t/2. Then, for 0 <t < 1/M and
a<1/2
2
< f(x)— tIIVf(X)||§2+ MRV
< F(x) = 3 IVE)3
< f(x) — at||VF(x)|3. O
Thus, when we use backtracking line search with tp := 1, line search terminates
with either t =1or t > /M.

F(r)
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Introduction
t line r

Descent methods act line s
adient descent method

Steepest descent method

Steepest descent direction

From first-order Taylor approximation of f(x 4 v) around x,
f(x+v) = f(x)+ VF(x)v.

directional derivative Vf(x)" v gives an approximate change in f for a small v,
a descent direction if V£(x)"v < 0.

Definition (Normalized steepest descent direction)

AXpsd = argmin{Vf(x)" v|||v] = 1}.

A search direction of unit norm giving largest decrease in the linear
approximation of f.
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Introduction
Exact line search
Descent methods Inexact line search

Gradient descent method
Steepest descent method

We use as search direction an unnormalized steepest descent direction:
Axgg = V() ||« Axnsds

|Z ||XH,.< = max{xTy . ||y|| = 1} (For instance, dual

where, || - ||« is dual norm of || -
norms of || - [l2, || - [[p, and || - |l1 are resp., || - [l2, || - lp—1. and || - [loo-
Also from definition,

VE(x) Axpeq = —IIVF(x)]3.

Algorithm (Steepest descent method)

given a starting point x € domf.

repeat
1. Compute steepest descent direction Axgy.
Line search. Choose a step size t > 0 via backtracking or exact
line search.
3. Update. x := x + tAxgy.

until stopping criterion is satisfied.
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Exact line search
Descent methods act line search

Gradient descent method

Steepest descent method

Steepest descent for various norms

@ When | - ||2 is used, Axgy = —VF(x).

@ When a quadratic norm, ||z|p = (2" Pz)"/? = ||P*/?z||,, P € 7, is used,

Axpeg = — (Vf(x)TP_1Vf(x)>_1/2 PV (x), (9)

@ For li-norm,
Axped = argmin{Vf(x)"v||v|: < 1}.

Let i be any index for which ||Vf(x)|lec = |(Vf(x))i|. Then, a
normalized steepest descent direction for the /i-norm is given by

., Of(x
Axped = —sign( 8;))6[, (10)

where ¢; is the ith vector of standard basis.
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Introduction

Exact line search
Descent methods Inexact line search

Gradient descent method

Steepest descent method

Convergence analysis

We assume f is strongly convex on the initial sublevel set S, and hence
V2f(x) < MI. Then,

2
Milxgq ll2 £2
2

f(x + tAxyy) (x) + tVF(x) Axgy +

M||x 2
(x) + tVF(x) Axgy + %ﬁ
= f(x) = tIVF(x)IE + 55 2V

where v € (0,1] and |[x]|+ > 7]|x]||2 for all x.

<f
<f
@ Note that the upper bound f(x) — t||Vf(x)||2 + %fHVf(x)Hi is

minimized at ¥ = v*/M.
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Introduction
xact line search
Descent methods Inexact line search
Gradient descent method
Steepest descent method

Convergence analysis(cont'd)

When backtracking line search is used,
@ since a < 1/2 and Vf(x)" Ax, d = —[IVF()|12,

2 2
F(x + FAxgg) < F(x) — ;WHW(X)W < f(x) + %Vf(x)TAxsd

satisfies the exit condition for backtracking line search.
@ Thus, line search returns a step size t > min{1, 3v°/M}, and we have
f(x 4+ tAxgy) < f(x) — at|[VF(x)||*(Line search exit criterion)
(x) = aomin{1, 572/ M} [VFCO
(x) — ay® min{1, 32/ M}V F(x)]3

INIAINA

£
£
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Introduction
xact line search
Descent methods Inexact line search
Gradient descent method
Steepest descent method

Convergence analysis(cont'd)

@ This implies that
f(x + thxgg) — p* < F(x) — p* — ay’ min{1, B7* /MY VF(x) |3

But, from f(x) — p* < 5= | VF(x)]
we get

2, or —|VF(x)[3 < —2m(F(x) — p*),

F(x+ thxgg) — p* < c(F(x) — p°),

where ¢ = 1 — 2ma~y® min{1, 3+°/M} < 1.
@ Hence f(x¥) — p* < *(F(x@) — p*).
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Newton step

Newton's method Newton's method

Definition (Newton step)

For x € domf, the vector
Axne i = —V2F(x) " VF(x)

is called the Newton step for f at x.

@ If V3f(x) = 0,
VF(x) Axpe = —VF(x)"V?F(x)'VF(x) < 0,

unless Vf(x) = 0.

@ This implies that the Newton step is a descent direction.
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Newton step

Newton's method Newton's method

Some interpretations

@ Consider the second-order Taylor approximation Fof fatxis

F(v) = f(x)+ VF(x)"v+ %VTVZf(X)v,

which is a convex quadratic function of v.
Then 7 is minimized when v = Axy: as we have V#(Axn) = 0.

@ Newton step is also the steepest descent direction at x for the quadratic
norm defined by V£ (x),

lull g2 = (9 F(x)u)?.
@ Linearizing optimality condition Vf(x*) = 0 around x, we get
Vf(x 4 v) = Vf(x) + V*f(x)v = 0.

Thus x + Axpt is the solution of the linear approximation of optimality
condition.
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Newton step

Newton's method Newton's method

Algorithm (Newton's method)
given a starting point x € domf, tolerance € > 0.

repeat
1. Compute the Newton step and decrement:
Dxn = —V2F(x)TIVF(x); A = VF(x)T V2 (x) I VF(x).
2. Stopping criterion. quit if \*/2 < e.
Line search. Choose a step size t > 0 via backtracking line search.
4. Update. x := x + tAxgy.

©
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Newton step

Newton's method Newton's method

Convergence analysis

We assume that
(i) f is twice continuously differentiable,

(i) strongly convex with constants m and M, i.e.,
ml < V?f(x) < Ml for x € S, and
(iii) the Hessian of f is Lipschitz continuous on S with constant L, i.e.,
IV2£(x) = V2 (¥)ll2 < Llx = yll2, Vx,y € S.
Note that L = 0 is valid for a quadratic function. Thus, L measures how well

can be approximated by a quadratic model. Intuition suggests that Newton's
method will work very well for a small L.
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Newton step

Newton's method Newton's method

Outline of convergence proof

We can prove that there are numbers 0 < 7 < m2/L and v > 0 such that
(i) if [VF(x¥)|2 > 7, then f(x* V) — £(xW) < —4, and
(ii) if [VF(x")|l2 < n, then the backtracking line search selects t*) =1, and

2
S IVFCD) 2 < (G IV ()]
@ From (i), the number of steps satisfying ||V (x®*))|2 > 1 cannot exceed
))—p* . . .
M# since f decreases by at least -y at each iteration.

@ From (i), if [|[VF(x¥)[l2 < n, then [VF(x* )|y < 55 (|VF(xW)|3 <
ﬁﬁ which is < 7 since < m?/L.
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Newton step

Newton's method Newton's method

Outline of convergence proof(cont’d)

@ Thus once ||[VF(x")[], < n, then ||[VF(x")|]2 < 7 and
L WA, < (=2 19 )2, Vi > &
om2 X l2 < (ﬁ” =)7, Z K,

called quadratic convergence.
@ Applying this inequality recursively,

ol—k ol—k

L 0 L *) 1
eIV < (el VAl ) < (5

@ and hence
2/7k+1

3
(1) * 1 N2 2m 1
) o < SV OE < 2 (5)
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Newton step

Newton's method Newton's method

Outline of convergence proof(cont’d)

The iterations in Newton's method fall into two stages:
@ damped Newton phase where ||Vf(x)||2 > n and algorithm can choose
t <1, and
@ pure Newton phase where ||[Vf(x)||2 < n and hence algorithm choose full
step size, t = 1.
From the previous observations, the number of iterations
@ from damped Newton phase is < (f(x(®) — p*)/v, and
@ from pure Newton phase, is given by € < 2%23(%)2/4“, and hence

bounded by
log, log,(€o/€), where eg = 2m’ /L.

Thus, total number of iterations until f(x) — p* < € is bounded by

(F(*) = p*) /7 + log, log,(co/e) = (F(x”) — p") /7 + 6.
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Newton step

Newton's method Newton's method

Homework

9.1, 93, 9.5,9.7,9.10

Additional Problems
1. Verify (9) and (10).

|- llp, and || - | are resp., - llps,

2. Verify that dual norms of || - ||z, |- 2,

and | - [|oc-

3. Newton step is the steepest descent direction at x for the quadratic norm
defined by V?f(x).
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