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Inequality constrained minimization

Consider minimization

min f0(x)
s.t. fi (x) ≤ 0, i = 1, . . . , m,

Ax = b,
(1)

where f : Rn → R is convex and twice cont. diff’ble (hence domain is open)
and A ∈ Rp×n is of full row-rank . We also assume ∃ optimal solution
x∗ ∈ domf such that p∗ = f (x∗). Furthermore, a Slater type constraint
qualification holds: ∃ feasible x satisfying fi (x) < 0 ∀ i = 1, . . ., m.
From KKT conditions, a point x∗ ∈ D is optimal iff ∃ λ∗ and ν∗ such that

Ax∗ = b, fi (x
∗) ≤ 0, i = 1, . . . , m
λ∗ ≥ 0,

∇f0(x
∗) +

∑m
i=1 λ∗i ∇fi (x

∗) + AT ν∗ = 0,
λ∗i ∇fi (x

∗) = 0, i = 1, . . . , m.

(2)
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Logarithmic barrier

Minimization (1) can be rewritten as follows:

min f0(x) +
∑m

i=1 I−(fi (x))
s.t. Ax = b,

(3)

where I− is indicator for the nonpositive reals:

I−(u) =

{
0, for u ≤ 0,
∞, for u > 0.

As an approximation of indicator, we can use logarithmic barrier,

Î−(u) = −(1/t) log(−u), domÎ− = −R++, (4)

where t > 0 is a parameter that sets the accuracy of approximation: the larger,

the more accurate.
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Logarithmic barrier(cont’d)
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Logarithmic barrier(cont’d)

Thus (3) is approximated by

min f0(x) +
∑m

i=1−(1/t) log(−fi (x))
s.t. Ax = b.

(5)

The term

φ(x) = −
m∑

i=1

log(−fi (x)),

with domφ = {x ∈ Rn : fi (x) < 0, i = 1, . . . , m}, is called the logarithmic
barrier or log barrier of (1).

Notice (5) is convex since −(1/t) log(−u) is convex and increasing in u.

Thus, with an appropriate closedness, Newton’s method, for instance, can
be used to solve it.
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Logarithmic barrier(cont’d)

Quality of (5) as approximation of (1) improves as t grows as will be seen.

On the other hand, lager t makes minimization of f0 + (1/t)φ via
Newton’s method difficult as Hessian varies rapidly near boundary of
feasible region.

This can be circumvented by solving a sequence of (5), increasing t at
each iteration, starting at the solution of the previous t.
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Logarithmic barrier(cont’d)
Gradient and hessian of log barrier

Note that

∇φ(x) =
m∑

i=1

1

−fi (x∗(t))
∇fi (x),

and

∇2φ(x) =
m∑

i=1

1

fi (x∗(t))2
∇fi (x)∇fi (x)T +

m∑
i=1

1

−fi (x∗(t))
∇2fi (x).
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Logarithmic barrier(cont’d)
KKT conditions of log barrier approximation (5) and central path

Consider following equivalent form of (5)

min tf0(x) + φ(x)
s.t. Ax = b.

(6)

Let x∗(t) be optimal solution of (6). From KKT conditions, ∃ ν̂ ∈ Rp such that

Ax∗(t) = b, fi (x
∗(t)) < 0,

∇f0(x
∗(t)) +

∑m
i=1

1
−tfi (x

∗(t))
∇fi (x

∗(t)) + AT (ν̂/t) = 0.
(7)

The set {x∗(t) : t > 0} is the called the central path associated to (1).
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Logarithmic barrier(cont’d)
“Minimal” preliminaries on Lagrangian dual function

Consider following function, called Lagrangian associated to (1):

L(x , λ, ν) = f0(x) +
∑m

i=1 λi fi (x) + νTAx , for some λ ≥ 0, ν. (8)

As λ ≥ 0, L(x , λ, ν) ≤ f (x) ∀ feasible x ∈ dom(f ).

Hence g(λ, ν) := infx∈dom(f ) L(x , λ, ν) ≤ p∗.

In other words, for any λ ≥ 0, g(λ, ν) is a lower bound on p∗.

In particular, if (1) is convex and x̄ ∈ domf , λ̄ ≥ 0, and ν̄ satisfy

∇f0(x̄) +
∑m

i=1 λ̄i∇fi (x̄) + AT ν̄ = 0, (9)

then L(x̄ , λ̄, ν̄) = infx∈dom(f ) L(x̄ , λ̄, ν̄) = g(λ̄, ν̄) is a lower bound on p∗.
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Logarithmic barrier(cont’d)

From (7), we can observe that x∗(t), λ∗i (t) = − 1
tfi (x

∗(t))
> 0, i = 1, . . . , m, and

ν∗(t) = ν̂/t satisfy (9). Hence the following is a lower bound on p∗:

L (x∗(t), λ∗(t), ν∗(t)) = f0(x
∗(t)) +

m∑
i=1

λ∗i (t)fi (x
∗(t)) + ν∗(t)T (Ax∗(t)− b)

= f0(x
∗(t))−m/t

≤ p∗

Thus, f0(x
∗(t))− p∗ ≤ m/t; as t grows x∗(t) gets closer to x∗ as predicted.
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Logarithmic barrier(cont’d)
Interpretation of central path via KKT conditions

From (7), x = x∗(t) from central path ‘almost’ satisfies the KKT conditions:

Ax = b, fi (x) ≤ 0,

λ ≥ 0,

∇f0(x) +
∑m

i=1 λi∇fi (x) + AT ν = 0,

−λi fi (x) = 1/t, i = 1, . . . , m.
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Algorithm (Barrier method)

given interior solution x, t := t(0), µ > 1, tolerance ε > 0.

repeat

1. Centering step: Starting at x, compute x∗(t) by solving (6).
2. Update x := x∗(t).
3. Quit if m/t < ε.

4. Increase t: t := µt.

First proposed by Fiacco and McCormick in the 1960s, in name of SUMT.

We assume to use Newton’s method for Centering step.
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Accuracy of centering

Choice of µ

Choice of t(0)
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Newton step for centering from Newton step for modified KKT

The Newton step ∆xnt for (6) is given by[
t∇2f0(x) +∇2φ(x) AT

A 0

] [
∆xnt
νnt

]
= −

[
t∇f0(x) +∇φ(x)

0

]
. (10)

We will derive ∆xnt of (10) from the Newton step for the modified KKT
conditions:

Ax = b,

∇f0(x) +
∑m

i=1 λi∇fi (x) + AT ν = 0,
−λi fi (x) = 1/t, i = 1, . . . , m.

(11)

In doing so, we first eliminate λi = − 1
tfi (x)

to get

Ax = b
∇f0(x) +

∑m
i=1

1
−tfi (x)

∇fi (x) + AT ν = 0.
(12)
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Newton step for centering from Newton step for modified KKT(cont’d)

To find the Newton step for solving (12), we consider its Taylor approximation,
by

∇f0(x + v) +
∑m

i=1
1

−tfi (x+v)
∇fi (x + v)

≈ ∇f0(x) +
∑m

i=1
1

−tfi (x)
∇fi (x) +∇2f0(x)v

+
∑m

i=1
1

−tfi (x)
∇2fi (x)v +

∑m
i=1

1
tfi (x)2

∇fi (x)∇fi (x)T v .

(13)

Using this approximation in place of nonlinear terms, we get

Hv + AT ν = −g , Av = 0, (14)

where,

H = ∇2f0(x) +
∑m

i=1
1

−tfi (x)
∇2fi (x) +

∑m
i=1

1
tfi (x)2

∇fi (x)∇fi (x)T

g = ∇f0(x) +
∑m

i=1
1

−tfi (x)
∇fi (x).
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Newton step for centering from Newton step for modified KKT(cont’d)

But,
H = ∇2f0(x) + (1/t)∇2φ(x), g = ∇f0(x) + (1/t)∇φ(x).

Hence ∆xnt and νnt of (10) satisfy

tH∆xnt + AT νnt = −tg , Aνnt = 0.

Comparing this with (14), we get

v = ∆xnt, ν = (1/t)νnt.

Hence the Newton’s direction for centering step is the same as the Newton’s
direction for solving the modified KKT conditions.
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Homework

11.1, 11.2, 11.3, 11.4, 11.9, 11.10.
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