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Preliminaries

Inequality constrained minimization

Consider minimization

min  fo(x)
st. fi(x)<0,i=1,...,m, (1)
Ax = b,

where f : R” — R is convex and twice cont. diff'ble (hence domain is open)
and A € RP*" is of full row-rank . We also assume 3 optimal solution

x™ € domf such that p* = f(x™). Furthermore, a Slater type constraint
qualification holds: 3 feasible x satisfying fi(x) <0V i=1,..., m

From KKT conditions, a point x* € D is optimal iff 3 A\* and v* such that

Ax* =b, i(x*)<0, i=1,....,m

A >0, )

Vi (x*) + 1 A VA(x*) + ATvx =0, (2)
A Vfi(x*)=0, i=1,....,m.
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Logarithmic barrier and central path

Logarithmic barrier

Minimization (1) can be rewritten as follows:

min  fo(x) + >, I-(fi(x))
s.t. on = b, ®)

where /_ is indicator for the nonpositive reals:

I (u) = 0, foru<Do,
YT oo, foru>0.

As an approximation of indicator, we can use logarithmic barrier,
1_(u) = —(1/t) log(—u), doml_ = —R,, (4)

where t > 0 is a parameter that sets the accuracy of approximation: the larger,
the more accurate.
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Logarithmic barrier and central path

Logarithmic barrier(cont 'd)

Figure 11.1 The dashed lines show the function I_(u), and the solid curves
show I_(u) = —(1/t) log(—u), for t = 0.5, 1, 2. The curve for t = 2 gives
the best approximation.
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Logarithmic barrier and central path

Logarithmic barrier(cont 'd)

Thus (3) is approximated by

min  fo(x) + 37, —(1/t)log(—fi(x))
st. Ax=b. : ®)

@ The term .
$(x) = =y _ log(—fi(x)),
i=1
with dom¢ = {x € R" : fi(x) < 0, i =1,...,m}, is called the logarithmic
barrier or log barrier of (1).

@ Notice (5) is convex since —(1/t) log(—wu) is convex and increasing in u.

@ Thus, with an appropriate closedness, Newton's method, for instance, can
be used to solve it.

Optimization Lab. Interior-point methods A supplementary note to Chapter 11 of C



Logarithmic barrier and central path

Logarithmic barrier(cont 'd)

@ Quality of (5) as approximation of (1) improves as t grows as will be seen.

@ On the other hand, lager t makes minimization of fy 4 (1/t)¢ via
Newton's method difficult as Hessian varies rapidly near boundary of
feasible region.

@ This can be circumvented by solving a sequence of (5), increasing t at
each iteration, starting at the solution of the previous t.
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Logarithmic barrier and central path

Logarithmic barrier(cont 'd)

Gradient and hessian of log barrier

Note that ”
Vo(x) = ,Z:; mVﬁ(X),
and
V26(x) = ; U (Xf(t))zw,-(x)w,-(xf + ; e (Xl* NS
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Logarithmic barrier and central path

Logarithmic barrier(cont 'd)

KKT conditions of log barrier approximation (5) and central path

Consider following equivalent form of (5)

min  tfo(x) + ¢(x)
st. Ax=b. (6)

Let x*(t) be optimal solution of (6). From KKT conditions, 3 & € R such that

Ax*(t) = b, fi(x*(t)) <0,
(7)
Vi(x*(t))+ >0, MW(X*@)) + AT(p/t) = 0.

The set {x*(t) : t > 0} is the called the central path associated to (1).
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Logarithmic barrier and central path

Logarithmic barrier(cont 'd)

“Minimal” preliminaries on Lagrangian dual function

Consider following function, called Lagrangian associated to (1):

L(x, \v) = fo(x) + 37, Mifi(x) + vT Ax, for some A >0, v. (8)

@ As A >0, L(x, A\, v) < f(x) V feasible x € dom(f).
@ Hence g(\,v) := infycaom(r) L(x, A, v) < p*.
@ In other words, for any A > 0, g(A,v) is a lower bound on p*.

@ In particular, if (1) is convex and X € domf, X > 0, and ¥ satisfy
Vh(x)+ > M NiVA(x) + Ao =0, (9)

then L(X,\, D) = infcdom(r) L(x,\,7) = g(\, D) is a lower bound on p*.
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Logarithmic barrier and central path

Logarithmic barrier(cont 'd)

From (7), we can observe that x*(t), A/ (t) = —W >0,i=1,...,m, and
v*(t) = D/t satisfy (9). Hence the following is a lower bound on p*:

fo(x™(£)) + D A (DF("() + v (1) T(Ax"(t) - b)

= () - m)t
< P

L (2), A™(2), V7 (1))

Thus, fi(x*(t)) — p* < m/t; as t grows x*(t) gets closer to x* as predicted.
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Logarithmic barrier and central path

Logarithmic barrier(cont 'd)

Interpretation of central path via KKT conditions

From (7), x = x*(t) from central path 'almost’ satisfies the KKT conditions:

Ax = b, fi(x) <0,
A >0,
Vio(x) + >0, MiVEi(x) + ATy =0,
=Aifi(x)=1/t, i=1,...,m.
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Barrier method

Algorithm (Barrier method)

given interior solution x, t := t®, 11 > 1, tolerance ¢ > 0.

repeat
1. Centering step: Starting at x, compute x*(t) by solving (6).
2. Update x := x*(t).
3. Quitifm/t <e.
4. Increase t: t := ut.

@ First proposed by Fiacco and McCormick in the 1960s, in name of SUMT.

@ We assume to use Newton's method for Centering step.
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Barrier method

@ Accuracy of centering
@ Choice of
@ Choice of t®
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Barrier method

Newton step for centering from Newton step for modified KKT

The Newton step Axnt for (6) is given by

tV2h(x) + Ve(x) AT DAxpt | tVfo(x) + V(x)
=- (10)
A 0 Unt 0
We will derive Axpt of (10) from the Newton step for the modified KKT
conditions:
Ax = b,
Vh(x) + 1, AiVi(x) + ATv =0, (11)
—\ifi(x) = l/t i=1,...,m.
In doing so, we first eliminate \; = tf(x) to get
Ax =b 19
V() + X7, = V() + ATy = 0. (12)
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Barrier method

Newton step for centering from Newton step for modified KKT(cont'd)

To find the Newton step for solving (12), we consider its Taylor approximation,
by
Vi (x +v) + 37, =ty VHilx +v)

~ Vio(x) + X7, =g VH(X) + V2 Hh(x)v (13)
+>m 7t;,-(x) V2f,-(x)v +> tf/.(];()Z Vﬁ(X)vﬁ(X)TV~
Using this approximation in place of nonlinear terms, we get
Hv+ATv = —g, Av =0, (14)
where,

H=V2h(x) + 7 = VA(X) + s wip VA(x)VA(x)T
g = Vi(x)+ X1y = V().
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Barrier method

Newton step for centering from Newton step for modified KKT(cont'd)

But,
H = V2f(x) + (1/t)V26(x), & = Vio(x) + (1/t)Vé(x).

Hence Axpt and vpt of (10) satisfy
tHAxpt + A vt = —tg, Avpt = 0.
Comparing this with (14), we get
v =Axpt, v = (1/t)vnt.

Hence the Newton's direction for centering step is the same as the Newton's
direction for solving the modified KKT conditions.
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Barrier method

Homework

11.1, 11.2, 11.3, 11.4, 11.9, 11.10.
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