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Introduction

OH

Basic physics areas in magnetic fusion
Equilibrium and stability: plasma beta

Heating and current drive: Lawson criterion
Transport: Lawson criterion
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- Single particle motion of the plasma
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- Single particle motion of the plasma
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- Magnetic field lines trace out "magnetic surfaces”,
to particles stay on these surfaces.




Introduction

- Plasmas as fluids

- The single particle approach gets to be complicated.

- A more statistical approach can be used because we
cannot follow each particle separately.

- Now introduce the concept of an electrically charged
current-carrying fluid.

— Magnetohydrodynamic
(magnetic fluid dynamic: MHD) equations




Introduction

 Ideal MHD

- Single-fluid model

- how magnetic, inertial, and pressure forces interact within
an ideal perfectly conducting plasma in an arbitrary magnetic
geometry

- Any fusion reactor must satisfy the equilibrium and stability
set by ideal MHD.

 Nonideal effects (e.g. electrical resistivity)
- allow the development of slower, weaker instabilities




Introduction

e Ideal MHD: =10

e Resistive MHD: n= 0




Introduction

e Ideal MHD: n =20 e Resistive MHD: = 0




The MHD Model

- Questions

1. The plasma is assumed to be collision dominated.
- Is it true in fusion plasmas?
- The ideal MHD provides a very accurate description of
most macroscopic plasma behaviour.
cf) collisionless MHD

2. Ideal MHD must be viewed as an asymptotic model in that
specific length and time scales must be assumed for
the derivation to be valid.

- Even when the collision-dominated assumption is not involved,
there are many situations where MHD is used to described
phenomena on time scales far beyond its strict range of
applicability.

12
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The MHD Model

- Radiation
- RF heating

artous transport
Resistive instabilities
- alpha-particle behaviour




The MHD Model

How does a given magnetic geometry provide forces
to hold a plasma in equilibrium?

Why are certain magnetic geometries much more
stable against macroscopic disturbances than
others?

Why do fusion configurations have such
technologically undesirable shapes as a torus,
a helix, or a baseball seam?




Description of the Ideal MHD Model

« Ideal MHD model

o .
—'0+V-pv =0 Mass continuity equation

av - = . . . .
pa =JxB-Vp Single-fluid equation of motion
daf p 0 Energy equation (equation of state):
dt\ o7 adiabatic evolution
E+VxB=0 Ohm's law: perfect conductor — “ideal” MHD
VxE = _8_B

A M |l ti

VB - /Joj axwell equations
V-B=0




Description of the Ideal MHD Model

- Validity of the ideal MHD model
- Characteristic length: a
- Characteristic speed: V; = (2T,/m,)1/?

- Characteristic time: 1, = a/V ~ us




Derivation of the Ideal MHD Model

- Starting Equations Homework

A, 1.V + e (E+axB)-V, ¥ =(%j
ot m ot ),

q, | uf, du current density

q, | f,du charge density




Derivation of the Ideal MHD Model

« Collision operator for elastic collisions

of B
( ot j B ;C“ﬂ

1. Conservation of particles between like and unlike particle collisions

| C..di =] C,du =[ C,dui =[ C,.dui =0
2. Conservation of momentum and energy btw. like particle collisions
[ m,aC..du = m,acC,da =0 | 1 M,u’C..di =| L mu?c,da =0
2 2

3. Conservation of total momentum and energy btw. unlike particle
collisions

j(meUCei +miC, )di =0 j% (m,u’C, +mu*C.)di =0

18
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« Two-Fluid Equations

Q =1 mass

jQi|:df“ _(afaj :|d[|’ -0 Q,=mpu momentum
dt ot ). Q,=m_u’/2 energy




Derivation of the Ideal MHD Model

« Considering the random thermal motion of particles

W=0-9,(F,t), (W)=0

1 2
P, :gnama<w > Scalar pressure
o = nama<W2> Total pressure tensor
1 =P — D I Anisotropic part of the pressure tensor
(04 (94 o
T =p,/n, Temperature
1 5 _
h, zgnama<w W> Heat flux due to random motion
5 [ = Mean momentum transfer btw. unlike
R, =|m,WC_,dw

particles due to the friction of collisions

Heat generated due to collisions btw.
unlike particles.
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Derivation of the Ideal MHD Model
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Derivation of the Ideal MHD Model

 Final set of two-fluid equations

(dn“j +n V-V,
dt /,

1. Certain asymptotic orderings are introduced
which eliminate the very high-frequency,
short-wavelength information in the model.

0 i op o
: §+V,0V—O

2. The equations are rewritten as a set of
single-fluid equations by the introduction of
appropriate single-fluid variables.

3. The plasma is assumed to be collision dominated.
V-E=—(n—n,) ' o 0T

—

€0 . V.-B=0
V-B=0 | .




Derivation of the Ideal MHD Model

- Low-Frequency, Long-Wavelength, Asymptotic Expansions

 First asymptotic assumption: ¢ — o
(Full — low-frequency Maxwell’s equations)

g —0: &0E/dt=0

Displacement current, net charge neglected

&V-E=0
» o\ 18 -
VxB = ge(nv, —ny,)+—— = 1]
c” ot
n—n, = ﬁv. E~0 N, =N, =N quasineutrality
e
Conditions for validity:
wlk <<c

displacement current
V., V; <<c¢, V; =(2T,/m,)"* neglected

2 1/2
W << @y, @y =(Ne"/Me&;)

e’ net charge neglected
a>> Ay, 4 =V; lo, »
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Derivation of the Ideal MHD Model

« Second asymptotic assumption: m, — 0
(electron inertia neglected: electrons have an infinitely fast
response time because of their small mass)

0~-en (E+V,xB)-V-P.+R

Conditions for validity:

<<, 1 <<a

pe’

O << W,

M. <<a, r,=V; la,

« Subtle effect:
- Neglect of electron inertia along B can be tricky.
- For long wavelengths, electrons can still require a finite response time
even though m, is small. This is region of the drift wave.
- We shall see that MHD consistently treats || motion poorly,
but for MHD behavior, remarkably this does not matter!!
- To treat such behavior more sophisticated models are required.
The resulting instabilities are much weaker, (and still important) than for MHD.
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Derivation of the 1deal MHD Model

- The Single-Fluid Equations

Introduce single fluid variables
L =mn mass density M, >0, n.=n,=n
V=V fluid velocity

J=en(V,-V,)  current density

V,=V-J/en
p=nT =p,+ P, total pressure
T=T +T total temperature

25




Derivation of the Ideal MHD Model

- The Single-Fluid Equations

%, _ -
E’O+V-pv =0 V-J =0 charge conservation

p%—jx B+Vp=-V-(IT, +11,)

p[gt—u+(u-V)u]=nq(E+uxB)—V-P

,0[(%u +(Uu-V)u]=-Vp+ vazu Navier-Stokes equation

This momentum density conservation equation for species resembles in
parts the one of conventional hydrodynamics, the Navier-Stokes equation.
Yet, in a plasma for each species the Lorentz force appears in addition,
coupling the plasma motion (via current and charge densities) to Maxwell's
equation and also the various components (electrons and ions) among
themselves.

26
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- The Single-Fluid Equations
op . > .
E+V',0V =0 V-J =0 charge conservation

dv

E+VxB=—(IxB-Vp, V-, +R)) v E__ OB
en ot
Ohm’s law _ —
VxB=yp,d
V-B=0
dip|__2 (Qi—V-hi—f[i:VV)
dt\ p” ) 3p”

d(Pe|__2 Q.—-V-h —I1,:V g3 |s gy Pe
dt\ p” ) 3p” en en yoll




Derivation of the Ideal MHD Model

e The Ideal MHD Limit

» Assumptions leading to ideal MHD
1. Philosophy: Ideal MHD is concerned with phenomena occurring on
certain length and time scales.
2. Ordering: Using this, we can order all the terms in the one fluid equations.
After ignoring small terms, we obtain ideal MHD.
3. Status: At this point only the assumptions ¢ > oo, m, — 0
have been used in the equation.

« Characteristic length and time scales for ideal MHD

oV
- o~ a) ~
ot a
9, 1
& ~k~V~ g macroscopic MHD phenomena
0]
V ~ E ~ VTi

28
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Derivation of the Ideal MHD Model

« Collision dominated limit
- Isotropic pressure is expected to arise in systems where many collisions
take place on a time scale short compared to those of interest. — Maxwellian

- Evolution of full pressure tensor plays only a minor role in equilibrium and
stability problems.

ions ot ~Vr7;la<<l
electrons @ty ~ (M, /mi)1/2VTi r.la<<l 7 ~(m /m)"?r, (T.~T)
A, ~V; 7, <<a@ mean free path

o a

Vitila~V;7r,la<<l

29




Derivation of the Ideal MHD Model

« MHD Limit

1. Use the collision dominated assumption to obtain ideal MHD.

2. Several additional assumptions will also be required.

3. Various moments in the equations are approximated by
classical transport theory of Braginskii.

4. Transport coefficients can also be derived in the homework problems.

Probl 2.2
- Reduction of single fluid equation robiems

1. Maxwell equations - OK
2. Mass conservation — OK
3. Momentum equation

p%—jx B+Vp=-V-(Ik+I1,)

1

IT, ~,Ll(2VH-\7”—§V-\7j~,uVTi/a u~nlz,

- viscosity
‘V-Hi /Vp‘ ~Vila<<l

30



Derivation of the Ideal MHD Model

« Reduction of single fluid equation
1. Maxwell equations — OK

2. Mass conservation - OK

3. Momentum equation - OK

4. Ohm’s law

€ 7B =L (B AT R

Vp./en r.
‘V x B a
_ - , resistivity
R./en ‘773‘ (m, /m)"*(r. momentum
= R S <<1 transfer due to
‘V X B‘ ‘V X B‘ WTji a collisions
1 = - m - .
< R.~n), n~—— ‘J‘~‘Vp‘/‘8‘
en ne“z,
The plasma must be larger enough so that resistive diffusion
does not play an important role. .

—
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« Reduction of single fluid equation

U1-l>w|_\)|—~

. Maxwell equations - OK

Mass conservation — OK

. Momentum equation - OK

. Ohm’s law - OK

. Energy equation

d( p 2 L.
Pi | (Qi -V.-h —IL :Vv)

dt\ p” )] 3p”

d
Pe Q.-V-h -T1i,:V

dt\ p” 3,0

(3-Vp,)/en _t,

1

v—JﬂJrlJ V( pej
en en yolt

I, :v(J/ TR
~ << e ( en) _ me (rLi) T "l <<1
op, / ot a op, / ot m, a a

I1

- 1/2
o - Vv m, VT. Tij
~| = ! <<1
op, /ot | m, a




o _ 1T J VY. P A O ad N _F - L v v v _vYyY.r.

—_ — —_— - —

—
_——— . » W W e e = - -y ¥ - e Wrrae = = - = - . = ® U e .- e

i(&j: - V|.(KiVTi)+n(Te_Ti):| h, ==K, Vil.  %>> %,

3p’ i Teq Dominated by parallel
thermal conduction

d 2 | n(T, -T.
O Pe | V- (5,VT,)— (T ~To) 0 _ n(T-T,)
dt{ p” 3p” Teq i =
| z'eq
To derive a single fluid model T B
assuming small equilibration time Q. =-— n{, -T)) + J-R,
Teq en
1/2 2y,
WT,, ~ @ M T. = M L Equilibration and Ohmic
| m, ! m, a heating
If this is true, then
T =T,=T/2, p=p,=p/2 K, ~NTz./m, ~(m /m)"

d( p 1 . Y2\ o
P P op/ ot m a

e




Derivation of the Ideal MHD Model

« Ideal MHD model

Mass continuity equation

Single-fluid equation of motion

Energy equation (equation of state):
adiabatic evolution

Ohm's law: perfect conductor — “ideal” MHD

Maxwell equations

34




Derivation of the Ideal MHD Model

« Summary of assumptions

1. Asymptotic: n, -0, c— oo
n—p Isotropic

1/2
- : m, V1T . :
2. Collision dominates: [m—'] ;;] <1 equilibration T, =T,
e
k— thermal conduction small
if all term small
3. Small gyro radius: r,/a <1 electron diamagnetism small

small terms in energy equation

nJ in ohms law small

m._ 2 Y
4. Small resistivity: [—e] a (i] <1

Ohmic heating small

35




Region of Validity
- Overall Criteria
1. High collisionality: x << 1 ———— x=3.0x10*(T*/an)<<1
2. Small gyro radius: y << 1 —> y=2.3x107?(8/na*)"* <<1

3. Small resistivity: y?/x << 1 —> y2/X:l.8><lO_7,B/aT2 <<1

1/2
y = rLi X = mi VTi Tii 10®*m=> <n<10%m>
o ’ o 0.5keV <T <50keV
a M, a 5 fixed(=0.05), a=1m, D, A=15
. I I I
2 = :!" =t
¥ “— |arge Callisionality Small Resistivity
; 14 | FUSION
: \ PLASMAS
1 i e o i ;/.II: .fbfl.la.t.a i T D_
Small Gyro Radius T{hev) 17
=2 -
ial
IDEAL
MHD -4
X 10°% T T T T T T T T
1 16 17 18 19 20 2 2 23
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Region of Validity

« Ideal MHD model is not valid for plasmas of fusion interest.
- Reason: collision dominated assumption breaks down

- But, large empirical evidence that MHD works very well
in describing macroscopic plasma behavior,
- Question: is this the result of some subtle and perhaps

unexpected physics?

37




Region of Validity

» Where specifically does ideal MHD breakdown?

O 0 oo R

Q0 T o N

. Momentum equation
IT << p because of collision dominated assumption
. IT, << p from collisionless theory
I1, ~ p parallel to the field, the motion of ions is kinetic.
. -~ L momentum equation OK
|| momentum equation not accurate
1/2

. Energy Equation V||'(’f||eV||T) ~(mij VTiT” <<1
collision dominated assumption op/ ot m, a

. K — oo rather than zero in collisionless plasma

More accurate equation of state — B-VT=0
. energy equation not accurate

38



Region of Validity

« MHD errors in the momentum and energy equation do not matter, why?

0w, - -

1. Momentum equation P tl =JxB-V,p valid for
R collisionless and
Ohm’s law and Faraday’s law %:Vxlxé collisional theory

Note that v, does not appear.

2. Errors appear in || momentum equation and energy equation.

3. However, it turns out that for MHD equilibrium and most MHD
instabilities, the parallel motion plays a small or negligible role.
This is not obvious a priori.

4. Assuming this to be true, an incorrect treatment of parallel motion is
unimportant, since no parallel motions are exerted:
the motions are incompressible. ) What is
a. B-Vp=0 no density compression along B imcompressibilty?

dp/dt=0

b. B-vT=0. K — o0

5. The condition B-Vp=0, Faraday’s law and Ohm’s law can be shown to
imply dp/dt=0. Conservation of mass then implies V-v=0 .

—




Region of Validity

» Conclusion

- Once incompressibility is accepted as the dominant motion of
unstable MHD modes, then errors in ideal MHD do not enter the
calculation.

- Ideal MHD gives the “same” answer as “collisionless MHD".
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