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Introduction

• Basic physics areas in magnetic fusion

- Equilibrium and stability: plasma beta

- Heating and current drive: Lawson criterion

- Transport: Lawson criterion
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Introduction

• Single particle motion of the plasma

Magnetic
field

ion

film2d.avi
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Introduction

• Single particle motion of the plasma

• Magnetic field lines trace out “magnetic surfaces”,
to particles stay on these surfaces.

Strong magnetic field:
rL << a

Magnetic
field

Electron Ion
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Introduction

• Plasmas as fluids

- The single particle approach gets to be complicated.

- A more statistical approach can be used because we
cannot follow each particle separately.

- Now introduce the concept of an electrically charged 
current-carrying fluid.

→ Magnetohydrodynamic
(magnetic fluid dynamic: MHD) equations
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Introduction

• Ideal MHD

- Single-fluid model

- how magnetic, inertial, and pressure forces interact within  

an ideal perfectly conducting plasma in an arbitrary magnetic  

geometry

- Any fusion reactor must satisfy the equilibrium and stability 

set by ideal MHD.

• Nonideal effects (e.g. electrical resistivity)

- allow the development of slower, weaker instabilities
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Introduction

• Ideal MHD:  = 0 • Resistive MHD:   0
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Introduction

• Ideal MHD:  = 0 • Resistive MHD:   0
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The MHD Model

• Questions

1. The plasma is assumed to be collision dominated.

- Is it true in fusion plasmas?

- The ideal MHD provides a very accurate description of 

most macroscopic plasma behaviour.

cf) collisionless MHD

2. Ideal MHD must be viewed as an asymptotic model in that 

specific length and time scales must be assumed for 

the derivation to be valid. 

- Even when the collision-dominated assumption is not involved,

there are many situations where MHD is used to described  

phenomena on time scales far beyond its strict range of 

applicability.
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The MHD Model

• Major discoveries of modern physics 

- Maxwell‟s equations with wave propagation

- Relativity

- Quantum mechanics

• Important processes in fusion plasmas

- Radiation

- RF heating

- Resonant particle effect

- Microinstabilities

- Classical transport

- Anomalous transport

- Resistive instabilities

- alpha-particle behaviour
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The MHD Model

How does a given magnetic geometry provide forces 

to hold a plasma in equilibrium?

Why are certain magnetic geometries much more 

stable against macroscopic disturbances than 

others?

Why do fusion configurations have such 

technologically undesirable shapes as a torus, 

a helix, or a baseball seam?
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Description of the Ideal MHD Model

• Ideal MHD model
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Ohm‟s law: perfect conductor → “ideal” MHD

Energy equation (equation of state): 
adiabatic evolution
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Description of the Ideal MHD Model

• Validity of the ideal MHD model

- Characteristic length: a

- Characteristic speed: VTi = (2Ti/mi)
1/2

- Characteristic time: τM = a/VTi ~ μs
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Derivation of the Ideal MHD Model
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Derivation of the Ideal MHD Model

• Collision operator for elastic collisions

1. Conservation of particles between like and unlike particle collisions

2. Conservation of momentum and energy btw. like particle collisions

3. Conservation of total momentum and energy btw. unlike particle
collisions
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• Two-Fluid Equations

Derivation of the Ideal MHD Model
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• Considering the random thermal motion of particles

Derivation of the Ideal MHD Model
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Derivation of the Ideal MHD Model
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• Final set of two-fluid equations

Derivation of the Ideal MHD Model
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1. Certain asymptotic orderings are introduced 

which eliminate the very high-frequency, 

short-wavelength information in the model.

2. The equations are rewritten as a set of 

single-fluid equations by the introduction of 

appropriate single-fluid variables.

3. The plasma is assumed to be collision dominated.
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Derivation of the Ideal MHD Model
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Derivation of the Ideal MHD Model

ceTLeLece

dpe

e
Vrar

a





/  ,  ,

  ,





• Second asymptotic assumption: me → 0
(electron inertia neglected: electrons have an infinitely fast 
response time because of their small mass)

Conditions for validity:
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• Subtle effect:
- Neglect of electron inertia along B can be tricky.
- For long wavelengths, electrons can still require a finite response time 
even though me is small. This is region of the drift wave.

- We shall see that MHD consistently treats || motion poorly, 
but for MHD behavior, remarkably this does not matter!!

- To treat such behavior more sophisticated models are required. 
The resulting instabilities are much weaker, (and still important) than for MHD.
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• The Single-Fluid Equations

Derivation of the Ideal MHD Model
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Derivation of the Ideal MHD Model
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Derivation of the Ideal MHD Model
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• The Ideal MHD Limit

Derivation of the Ideal MHD Model

• Assumptions leading to ideal MHD

1. Philosophy: Ideal MHD is concerned with phenomena occurring on 

certain length and time scales.

2. Ordering: Using this, we can order all the terms in the one fluid equations.

After ignoring small terms, we obtain ideal MHD.

3. Status: At this point only the assumptions c → ∞, me → 0 

have been used in the equation.
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• Characteristic length and time scales for ideal MHD

macroscopic MHD phenomena
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Derivation of the Ideal MHD Model

• Collision dominated limit
- Isotropic pressure is expected to arise in systems where many collisions 
take place on a time scale short compared to those of interest. → Maxwellian

- Evolution of full pressure tensor plays only a minor role in equilibrium and 
stability problems.
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Derivation of the Ideal MHD Model
• MHD Limit

1. Use the collision dominated assumption to obtain ideal MHD.

2. Several additional assumptions will also be required.

3. Various moments in the equations are approximated by 

classical transport theory of Braginskii.

4. Transport coefficients can also be derived in the homework problems.
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• Reduction of single fluid equation

1. Maxwell equations – OK

2. Mass conservation – OK

3. Momentum equation
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Derivation of the Ideal MHD Model
• Reduction of single fluid equation

1. Maxwell equations – OK

2. Mass conservation – OK

3. Momentum equation – OK

4. Ohm‟s law
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The plasma must be larger enough so that resistive diffusion 
does not play an important role.
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Derivation of the Ideal MHD Model
• Reduction of single fluid equation

1. Maxwell equations – OK

2. Mass conservation – OK

3. Momentum equation – OK

4. Ohm‟s law – OK

5. Energy equation
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Derivation of the Ideal MHD Model

Dominated by parallel
thermal conduction
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To derive a single fluid model
assuming small equilibration time
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Derivation of the Ideal MHD Model

0
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


Mass continuity equation

pBJ
dt
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
 Single-fluid equation of motion

0









p

dt

d

0 BvE


Maxwell equations
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

Ohm‟s law: perfect conductor → “ideal” MHD

Energy equation (equation of state): 
adiabatic evolution

• Ideal MHD model
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Derivation of the Ideal MHD Model
• Summary of assumptions

∞
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Region of Validity

• Overall Criteria

1. High collisionality: x << 1

2. Small gyro radius: y << 1

3. Small resistivity: y2/x << 1

1)/(100.3 23  anTx

1)/(103.2 2/122   nay 

1/108.1/ 272   aTxy 

keV50keV5.0

m10m10 322318



 

T

n

 fixed(=0.05), a=1m, D, L=15
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Region of Validity

• Ideal MHD model is not valid for plasmas of fusion interest.

- Reason: collision dominated assumption breaks down

- But, large empirical evidence that MHD works very well 

in describing macroscopic plasma behavior.

- Question: is this the result of some subtle and perhaps 

unexpected physics?
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Region of Validity

1. Momentum equation

a.  << p because of collision dominated assumption

b. ⊥<< p from collisionless theory

c. || ~ p parallel to the field, the motion of ions is kinetic.

d. ∴⊥ momentum equation OK

|| momentum equation not accurate

2. Energy Equation

a. collision dominated assumption

b. || → ∞ rather than zero in collisionless plasma

c. More accurate equation of state → B⋅∇T=0 

d. ∴ energy equation not accurate
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• Where specifically does ideal MHD breakdown?
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Region of Validity

1. Momentum equation

Ohm‟s law and Faraday‟s law

Note that v|| does not appear.

2. Errors appear in || momentum equation and energy equation. 

3. However, it turns out that for MHD equilibrium and most MHD 

instabilities, the parallel motion plays a small or negligible role. 

This is not obvious a priori.

4. Assuming this to be true, an incorrect treatment of parallel motion is 

unimportant, since no parallel motions are exerted: 

the motions are incompressible.

a. B⋅∇ρ=0 no density compression along B

b. B⋅∇T=0. || → ∞

5. The condition B⋅∇ρ=0, Faraday‟s law and Ohm‟s law can be shown to 

imply dρ/dt=0. Conservation of mass then implies ∇⋅v=0

pBJ
dt

vd


 




Bv
t

B 








Valid for 
collisionless and 
collisional theory

• MHD errors in the momentum and energy equation do not matter, why?

What is 
imcompressibilty?

d/dt=0
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Region of Validity

• Conclusion

- Once incompressibility is accepted as the dominant motion of 

unstable MHD modes, then errors in ideal MHD do not enter the 

calculation.

- Ideal MHD gives the “same” answer as “collisionless MHD”.


