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• Tokamaks

Stability: Multidimensional Configurations

• Ballooning Modes



































2

0
ˆ

2

1
)(

/),(ˆ

ˆ
ˆ

0

dqq

RJBq

d
q

p

n

p

p

RB

pJ
c

B

Fp
c

BJR
a

JB

BR
a

 



 0

12

0
02212

22

0

2
   ,   ,

1
   ,

0















gX

X
f



)(
2

   , 2

2

0

2

22

tntnt

ptn kkk
d

dp

B

JRB
g

JB

kk
f 









  0ˆˆ
1

0
1

2

0 






























Xc

cX
aa 






Analytic Model: large aspect ratio, circular cross section

small average β but high β’ in a small region



5

• Tokamaks

Stability: Multidimensional Configurations

• Ballooning Modes
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small average β but high β’ in a small region

- Leading order in the inverse aspect ratio expansion

- Cylindrical values used
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• Tokamaks

Stability: Multidimensional Configurations

• Ballooning Modes
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• Tokamaks

Stability: Multidimensional Configurations

• Ballooning Modes
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• Tokamaks

Stability: Multidimensional Configurations

• Ballooning Modes
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• Tokamaks

Stability: Multidimensional Configurations

• Ballooning Modes

Numerical Solution

(s, α) diagram

- As sufficiently high pressure gradient, the destabilising contribution

from the unfavourable curvature region overcomes the shear → unstable

- When the shear increases, the maximum allowable pressure 

gradient increases.

- Second region of stability: sufficiently large values of the pressure

gradient are stabilised even at low values of shear 

→ possibility of high β operation
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• Tokamaks

Stability: Multidimensional Configurations

• Ballooning Modes

Analytic Solution: Energy Principle
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• Tokamaks

Stability: Multidimensional Configurations

• Ballooning Modes
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Why does the second region of stability exist?

average shear

pressure-driven modulation

If the modulation neglected, the local shear = the average shear

0   ),( 00  s

Variational analysis repeated

Without the pressure-driven modulation, no second region of stability

local shear
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• Tokamaks

Stability: Multidimensional Configurations

• Ballooning Modes

Analytic Solution: Energy Principle

- Full variational solution

2/12)11.036.072.0(78.0  s

- Complete ballooning mode perturbation

quasimode eigenfunction
ballooning mode displacement 
(perturbed plasma surface)
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• Tokamaks

Stability: Multidimensional Configurations

• Ballooning Modes

Analytic Solution: Energy Principle
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• Tokamaks

Stability: Multidimensional Configurations

• Ballooning Modes

Application of the Ballooning Mode Stability Criterion: 1st stability region
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Stability: One-Dimensional Configurations

• The “Straight” Tokamak

• Internal Current-Driven Modes
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- Contributions from both the pressure and parallel current are destabilising

→ unstable

- Often referred to as the m = 1 internal kink mode. But the mode can also be

driven by the pressure gradient, particularly in the high-β tokamak regime.

- The nonlinear evolution of the m = 1 internal kink mode, including the

effects of dissipation is believed to be an important component in sawtooth

oscillations observed in many tokamaks.

- If the energetic particle effect is included, a modified m = 1 mode thought 

to be responsible for the so-called fishbone oscillations.

Use same trial function 

as before
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• Tokamaks

Stability: Multidimensional Configurations

• Low-n Internal Modes

- setting an upper limit on the toroidal current density on axis

- large aspect ratio, circular cross section, βt ~ ε2, βp ~ 1
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- n >> 1: δWF/W0 ≈ Wc, identical to that in the straight tokamak, 

requiring nq0 > 1

- n = 1: δWF/W0 ≈ Wt, stable in the limit if βp → 0 if q0 < 1

- In both cases, increasing βp is destabilising and instability for 

βp > (13/144)1/2 ≈ 0.3

- Numerical results: sensitive to q profile near the axis 

and q0 > 1 required for stability
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• Tokamaks

Stability: Multidimensional Configurations

• External Modes

- More severe βt limit than n → ∞ internal ballooning modes

- In the regime of the ohmically heated tokamak, β ~ ε2, 

ballooning effects are unimportant on external modes: 

identical to the straight tokamak

- The new stability limit appears in the high regime β ~ ε 

and is associated with toroidal ballooning effects.

- Combination of ballooning and kinking - the most unstable modes:

driven by a combination of both the pressure gradient and the parallel

current, in contrast to n → ∞ internal ballooning modes driven solely 

by the pressure gradient.

- qa ≠ q* in high β tokamaks in contrast to low β circular system
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• Tokamaks

Stability: Multidimensional Configurations

• External Modes

Sharp Boundary Model: surface current model

- Within the plasma J = 0, p = const.

- Circular cross section
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• Tokamaks

Stability: Multidimensional Configurations

• External Modes

Sharp Boundary Model: surface current model
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• Tokamaks

Stability: Multidimensional Configurations

• External Modes

Sharp Boundary Model: surface current model
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• Tokamaks

Stability: Multidimensional Configurations

Sharp Boundary Model: surface current model

- Ballooning instabilities do not in general set limits on βt or I0, 

but only on the ratio βt q*
2/ε (plus shape factors). 

In contrast, external kinks set individual limits on both βt /ε and q*.

- The system is unstable along the equilibrium boundary for q* < 1.7:

the kink mode is unstable even though qa = ∞ 

→ q* rather than qa is the critical parameter.

- External ballooning-kink modes require both a current limit q* > 1 

and a pressure limit βt /ε < 0.21 for stability: 

most dangerous ideal MHD instabilities.

21

• External Modes

structure of pressure-driven kinks



• Tokamaks

Stability: Multidimensional Configurations

• Numerical Results: The Sykes Limit, the Troyon Limit

Once an equilibrium is established, the following stability tests are made.

(1) Mercier stability

(2) High-n ballooning modes

(3) Low-n internal modes

(4) External ballooning-kink modes

- Helpful in the design of new experiments and in the interpretation 

and analysis of existing experimental data

- Playing a role in the determination of optimised configurations

- Quantitative predictions for the maximum βt or I0 and that 

can be stably maintained in MHD equilibrium

22



• Tokamaks

Stability: Multidimensional Configurations

• Numerical Results: The Sykes Limit, the Troyon Limit

23

Ballooning Mode Studies: first region of stability
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Sykes limit

- The absolute maximum value of βt depends upon how high κ

and how low q* can be made.

- One limit is due to Mercier stability, and strong triangularity is 

required to delay the onset of these modes.

- The other limit is due to external kinks, although not included 

in the ballooning mode studies.



• Tokamaks

Stability: Multidimensional Configurations

• Numerical Results: The Sykes Limit, the Troyon Limit

24

Full Stability Studies: against the Mercier criterion, ballooning modes,

the n = 1 internal kink, and low-n external 

ballooning-kink modes

Troyon limit

- Optimised profile: q0 slightly above 1, flat q profile with rapid rise

near the plasma surface, broad pressure profile  

- n = 1 external ballooning mode sets the most severe βt limit.

- The value of q0 must be slightly greater than 1 to satisfy the Mercier

criterion and the n = 1 internal kink condition.

- The maximum value of βt occurs for the lowest allowable value of 

q* which is, in general, a function of κ as set by external kinks.
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• Tokamaks

Stability: Multidimensional Configurations

• Numerical Results: The Sykes Limit, the Troyon Limit

25

Second Region of Stability Studies: bean-shaped cross section

- Indentation i ≡ d/2a created by

adding a pusher coil in the 

region of indentation

- Difficult to achieve and 

maintain i ~ 0.3 technologically



• Tokamaks

Stability: Multidimensional Configurations

• Numerical Results: The Sykes Limit, the Troyon Limit
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Second Region of Stability Studies: bean-shaped cross section



• Tokamaks

Stability: Multidimensional Configurations

• Numerical Results: The Sykes Limit, the Troyon Limit
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Second Region of Stability Studies: bean-shaped cross section

Princeton Bean Experiment (PBX)



• Tokamaks

Stability: Multidimensional Configurations

• n = 0 Axisymmetric Modes

28



• Tokamaks

Stability: Multidimensional Configurations

• n = 0 Axisymmetric Modes

- Macroscopic motion of the plasma towards the wall

- Directly coupled to toroidicity and noncircularity

- m = 1, n =0 → δW = 0 indicating neutral stability

- Plasma treated as a thin current-carrying loop of wire with perfect 

conductivity embedded in an externally applied vertical field.

- The effects of plasma pressure and the internal magnetic flux neglected

- Objective: to determine the appropriate constraints on the shape 

of the vertical field to provide stability against rigid vertical 

and horizontal displacements

29Pure vertical field is neutral by symmetry.
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Stability: One-Dimensional Configurations

• The “Straight” Tokamak

• External Modes (The m = 1 Kruskal-Shafranov Limit) 
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Considering the m = 1 mode

- Minimising eigenfunction by ξ(r) = ξa = const (independent of q profile)

→ integral contribution vanished

Kruskal-Shafranov criterion:

stability condition for the m = 1 external kink mode 

for the worst case, n = 1
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• n = 0 Axisymmetric Modes
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• n = 0 Axisymmetric Modes
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• Tokamaks

Stability: Multidimensional Configurations

Constraint:

• n = 0 Axisymmetric Modes
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• Tokamaks

Stability: Multidimensional Configurations

Eliminate ∂I/∂Z, ∂I/∂R from force relation:

• n = 0 Axisymmetric Modes
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Vertical stability

• n = 0 Axisymmetric Modes
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Stability: Multidimensional Configurations

• n = 0 Axisymmetric Modes

: n < 3/2

Horizontal stability
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Stability: Multidimensional Configurations

• n = 0 Axisymmetric Modes

- n = 0 axisymmetric modes can lead to potentially serious instabilities in 

a tokamak.

- For a circular cross sections a moderate shaping of the vertical field 

should provide stability.

- For noncircular tokamaks, vertical instabilities produce important 

limitations on the maximum achievable elongations.

- Even moderate elongations require a conducting wall or a feedback 

system for vertical stability.
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ITER: current design of the in-
vessel coils to stabilize ELMs 
and the vertical displacement 
events, shown for a 
40°vacuum vessel sector
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