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The Origin of the Star Energy

Nobel prize in physics 1967
“for his contribution to the theory of 
nuclear reactions, especially his 
discoveries concerning the energy 
production in stars”

Hans Albrecht Bethe
(1906. 7. 2 – 2005. 3. 6)
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To build a sun on earth
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Magnetic confinement

plasma
pressure

gravitation

Equilibrium in the sun

plasma 
pressure

Plasma on earth
much, much smaller & tiny mass!

magnetic
field

• Imitation of the Sun on Earth
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JET (Joint European Torus): R0=3m, a=0.9m, 1983-today

Tokamak
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JET (Joint European Torus): R0=3m, a=0.9m, 1983-today

Tokamak

How to describe fusion plasmas?
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What is Ideal MHD?

• Ideal MHD

- Ideal:

Perfect conductor with zero resistivity

- MHD:

Magnetohydrodynamic (magnetic fluid dynamic)

- Single-fluid model:

electrically charged current-carrying fluid.
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Derivation of the Ideal MHD Model
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• Starting Equations

Ludwig Boltzmann 
(1844-1906)
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James Clark Maxwell 
(1831-1879)
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Derivation of the Ideal MHD Model

• Assumptions
- First asymptotic assumption: 0 → 0
(Full → low-frequency Maxwell‟s equations)
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- Second asymptotic assumption: me → 0
(electron inertia neglected: electrons have an infinitely fast 
response time because of their small mass)
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- Third assumption: collision dominated plasma
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quasineutrality → displacement current,
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Derivation of the Ideal MHD Model
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Mass continuity equation
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 Single-fluid equation of motion

Maxwell equations
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d Energy equation (equation of state): 
adiabatic evolution

• Ideal MHD model

0 BvE


Ohm‟s law: perfect conductor → “ideal” MHD

Ohm‟s triangle

http://commons.wikimedia.org/wiki/Image:Ohm's_law_triangle.PNG
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General Properties of Ideal MHD

• Conservation of Flux: “Frozen” Field Line Picture

- A consequence of the perfect conductivity Ohm‟s law, is that 

the magnetic flux passing through any arbitrary open surface area 

moving with the plasma is constant.

Ideal MHD:
 = 0

Resistive MHD:
  0

time rate of change of the flux 
passing through any moving 
surface, S0

dt

d

- Magnetic lines move with the plasma; they are “frozen” into the fluid.
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General Properties of Ideal MHD
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Limitations

• Major discoveries of modern physics 

- Maxwell‟s equations with wave propagation

- Relativity

- Quantum mechanics

• Important processes in fusion plasmas

- Radiation

- RF heating

- Resonant particle effect

- Microinstabilities

- Classical transport

- Anomalous transport

- Resistive instabilities

- alpha-particle behaviour
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How does a given magnetic geometry provide forces 

to hold a plasma in equilibrium?

Why are certain magnetic geometries much more 

stable against macroscopic disturbances than 

others?

Why do fusion configurations have such 

technologically undesirable shapes as a torus, 

a helix, or a baseball seam?

Applications
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Plasma Eqauilibrium and Stability

Applications

http://web.gat.com/theory/File:Fig.1.png
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Equilibrium and Stability

Equilibrium?

Stable?

Yes! Forces are balanced

No!
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Equilibrium and Stability

Equilibrium?

Stable? No! The system cannot recover.

Yes! Forces are balanced
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• Basic Equations

• MHD equilibrium equations:

time-independent with v = 0 (static)
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cf) stationary equilibrium with nonzero flows:  
v << VTi (ideal MHD)

J. E. Rice et al, Nucl. Fusion
47 1618 (2007) 
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• Toroidicity

Equilibrium

• Why are most fusion configurations toroidal?

• Answer: Avoid parallel end losses
- Dominant loss mechanism is heat loss via thermal conduction.
- Heat loss is more severe along B than ⊥ to B
because charged particles move freely along magnetic field lines. 
The magnetic field confines particles in the ⊥ direction.
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• Basic Forces Acting on Tokamak Plasmas

Equilibrium - Tokamak

)(~ 21 pSpSeF RNET 

- Tire tube force

- Radial pressure force

X Jt

Bp

Jt x Bp
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• Basic Forces Acting on Tokamak Plasmas

- 1/R force
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Equilibrium - Tokamak
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• Basic Forces Acting on Tokamak Plasmas

- External coils required to provide the force balance

KSTAR

Equilibrium - Tokamak
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• Basic Forces Acting on Tokamak Plasmas

- External coils required to provide the force balance

vpv BIRBILF 02

vBJ



X

●

●

X

X

X

X

Force

PF coils

How to describe the equilibrium of plasmas?

Equilibrium - Tokamak
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• The Grad-Shafranov Equation

- obtained from the reduction of the ideal MHD equations

- exact (no expansion)

- Toroidal axisymmetric ∂/∂=0

- 2 dimensional

- nonlinear

- partial differential equation

- elliptic characteristics

- Grad and Rubin (1958), Shafranov (1960)
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Equilibrium - Tokamak
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• The Grad-Shafranov Equation
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• Plasma Parameters and Figures of Merit
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- Safety factor

- Magnetic shear
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- Plasma beta

- Magnetic well

- Kink safety factor

Equilibrium - Tokamak
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• Numerical Calculation of Grad-Shafranov Equation

Equilibrium - Tokamak
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Stability

• Definition of Stability

Marginally stable

- assuming all quantities of interest linearised about their equilibrium values.
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small 1st order 
perturbation

Im ω > 0: exponential instability

Im ω ≤ 0: exponential stability
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Stability

• Various Approaches for Stability Analyses

1. Initial value problem using the general linearised equations of motion

2. Normal-mode eigenvalue problem

3. Variational principle

4. Energy Principle
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Stability
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• Initial Value Formulation
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away from its equilibrium 
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momentum equation

force operator

+ Boundary conditions

Formulation of the generalized stability equations as an initial value problem



34

Stability

• Normal-Mode Formulation
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normal-mode formulation

- An eigenvalue problem for the eigenvalue ω2

conservation of mass

conservation of energy

Faraday„s law
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Stability

• Variational Principle
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Multiplied by y

and integrated over the region 0 ≤ x ≤ 1

Why is this variational?

- Substitute all allowable trial function y(x) into the equation above. 

- When resulting  exhibits an extremum (maximum, minimum, 

saddle point) then  and y are actual eigenvalue and eigenfunction.
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Stability

• Variational Principle
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 normal-mode formulation

dot product with * then integrated over 
the plasma volume

Any allowable function  for which ω2 becomes an extremum is an 

eigenfunction of the ideal MHD normal mode equations with eigenvalue ω2.
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Stability

• Variational Principle
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dot product with * then integrated over 
the plasma volume
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Kinetic energy

- Change in potential energy associated with the perturbation

- Equal to the work done against the force F()

in displacing the plasma by an amount .

Conservation of energy
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Stability

• Energy Principle
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Energy required to compress the plasma: main source of potential energy 

for the sound wave

Energy necessary to compress the magnetic field: major potential energy 

contribution to the compressional Alfvén wave

Energy required to bend magnetic field lines: dominant potential energy 

contribution to the shear Alfvén wave

destabilising

current-driven (kinks) modes (+ or -)

Pressure-driven modes (+ or -)
stabilising
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Stability - Tokamak

• Ideal MHD Instabilities in a Tokamak

1. Internal localised interchange instabilities: Mercier criterion

2. Low-n internal modes: Sawtooth

3. m = 1 external kink modes: Kruskal-Shafranov limit

4. Ballooning modes

5. External ballooning-kink modes

6. Resistive wall modes

7. n = 0 axisymmetric modes
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• Internal localised interchange instabilities: Mercier criterion

Stability - Tokamak
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Stability - Tokamak

• Low-n internal modes: Sawtooth
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• Sawtooth

1. T(0) and j(0) rise

2. q(0) falls below 1 

→ kink instability grows

3. Fast reconnection event:

T, n flattened inside q = 1 surface

q(0) rises slightly above 1

kink stable

Stability - Tokamak

• Low-n internal modes: Sawtooth



- In the limit where the conducting wall moves to infinity

Stability - Tokamak

• m = 1 external kink mode: Kruskal-Shafranov limit
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Kruskal-Shafranov criterion:

stability condition for the m = 1 external kink mode 

for the worst case, n = 1
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Imposing an important constraint on tokamak operation: 

toroidal current upper limit (I < IKS)
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Analytic Model




















0

2

0

2

0

022

0

2

0

2

2

0

2

0

2/

2
Rq

B

p
R

BR

Br

BR

pr

q

qr
s

0)cossin()1( 2 
















X

X




)sin(sin)()( 00   s

average shear

measure of 
the pressure 
gradient

desired form of the 
ballooning mode 
equation for the model 
equilibrium (s, α)

• Ballooning modes

Stability - Tokamak
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Stability - Tokamak

Numerical Solution

(s, α) diagram

• Ballooning modes
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Sharp Boundary Model: surface current model
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destabilising effect due to the parallel current 

(kink term)

high β ballooning effect (pressure-driven term)

- For low β, the ballooning contribution negligible

toroidal field curvature

Stability - Tokamak

• External ballooning-kink modes



Once an equilibrium is established, the following stability tests are made.

(1) Mercier stability

(2) High-n ballooning modes

(3) Low-n internal modes

(4) External ballooning-kink modes

- Helpful in the design of new experiments and in the interpretation 

and analysis of existing experimental data

- Playing a role in the determination of optimised configurations

- Quantitative predictions for the maximum βt or I0 and that 

can be stably maintained in MHD equilibrium
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Stability - Tokamak

• Numerical Results: The Sykes Limit, the Troyon Limit

Troyon limit
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• Resistive wall modes
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• Saddle coils for direct stabilisation

- Different feedback schemes exist

- First results look promising

- New experiments with in-vessel

coils under way on DIII-D

Stability - Tokamak

http://web.gat.com/theory/File:Fig.1.png
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• n = 0 axisymmetric modes

Stability - Tokamak
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Summary

• Definition of Ideal MHD

• Equilibrium

• Stability
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