5. 가스지구화학 탐사

- 탐사 분야에서 가스와 증기의 장점
 - 높은 이동성
 - 지구화학적 물질과 수반
 - 경제적 (심부의 잠두광상, 탄화수소 탐사)
 - 야외에서 측정이 용이

단점

- 계절/시간에 따라 매우 변화가 큼

최근 가스지구화학이 각광받는 이유

	현재
문제점	해결된 점
가스의 시료채취가 어려움 다른 가스들과의 반응 산화작용 대기에 의한 희석 생물학적인 반응 시료 용기 벽면에의 흡착	휴대용 가스측정기 개발 및 정확도 증가
미량성분의 화학적 분석이 어려움	가스 크로마토그래피 개발

자연적으로 발생하는 가스의 근원

- ・ 대기가스(Atmospheric gases)
 − N₂, O₂, CO₂
- 지하 심부로부터 유래된 가스(Deep-seated gases)
 H₂, CH₄, H₂S
- 방사성 가스(Radiogenic gases)
 He, Rn
- 생물 기원의 가스(Biogenic gases)
 CH₄, H₂, H₂O, CO
- 황화물 광상에서 발생되는 가스(Gases generated in sulfide deposit)

 $-H_2S$, COS, SO₂

가스지구화학 탐사 사례

- 토양가스 중 이산화탄소(CO₂)의 함량을 이용한 황화광상의 탐사
 - 1960년대 후반 이후 잠두 황화광상을 찾기 위해 많은 연구가 수행됨 (Glebovskaya, 1969; Dadashev et al., 1971; Fridman and Petrov, 1976; Lovell and Reid, 1990)
 - 미국 Arizona 북구 콜로라도 고원을 대상으로 한 사례 연구

Arizona의 광화된 각력파이프 상부의 토양 가스 중에 함유된 CO₂ 함량

토양 가스 중 CO₂와 ΔO₂을 이용한 광상 탐사 (Lovell et al., 1983)

미국 아리조나 주 구리-아연 광화 지역 (Johnson camp)에서 조사한 CO₂ 및 ΔO₂ 자료이며 지 하 60 m에 존재하는 광화대 위 에서도 이상대가 관찰됨

나미비아 Witvlei의 구리 광화 지역에서 조사한 CO₂ 및 ΔO₂ 자 료이며 이상대가 관찰됨 (Lovell et al., 1983)

토양 가스 중 탄화수소 농도와 비율을 이용한 광상 탐사 (Kesler et al., 1990)

토양가스 중의 헬륨(He) 함량을 이용한 우라늄 탐사

- 미국 Colorado의 Weld County에 위치하는 두루마리형(roll-type) 우라늄 광상에서 가스지구화학 탐사의 적용 가능성이 검토됨 (Reimer et al., 1979)
- 빗금 친 지역이 두루마리 광체이며 지하수의 흐름으로 남쪽 약 1.5km 떨어진 지점에 이상대가 나타남

호주 서부 Mulga Rock prospect의 우라늄 광화대에서 토양 가스 중 He과 Rn 농도 조사 (Butt and Gole, 1985)

호주 서부, Manyingee 우라늄 광상 근처(A)와 Manyingee-Bennett well 지역(B)의 탐사 시추공과 stock well에서 채수한 지하수 시료에서의 He과 Rn 농도 조사 (Butt and Gole, 1985)

토양가스 중의 헬륨, 유황 및 탄화수소를 이용한 석유 탐사

- 미국 Dragoon 유전의 석유는 약 2300m의 심도에 위치하여 시추를 통해 탐사하기 어려움
- 가스정 상부에 있는 표토와 50cm(18inch) 깊이의 토양 중
 에 있는 휘발성 탄화수소와 유황의 함량변화를 조사하였으
 며 가스정 상부의 토양가스에서 He 함량을 측정

토양 가스 중 탄화수소를 이용한 석유 탐사 (Richers, 1985)

-6000 L

미국 West Virginia의 노두 위로 propane이 고농도로 나타남

1 km

1 mile

0

0

VERTICAL EXAGGERATION 2.1X

지하수 중의 수은(Hg) 함량 변화를 이용한 지진의 예측 (Jin et al., 1989)

- 지진을 예측하는데 있어서 1960년대 후반부터 Rn, He, Ar, CO₂, CH₄, H, Hg 같은 기체의 이용 가능성이 검토
- Beijing시의 서부 Miaofengshan 지역에서 지진 발생 10일 전부터 Hg 함량이 증가였고 지진이 일어나기 <mark>2일전에는</mark> 약 <mark>45</mark>배까지 증가

지열탐사에의 응용

入50~

2000 feet

610 meters

305

Contour intervals: 50, 100, 200, 400, 800, 1600, 3200ppb

Background: 29ppb Threshold : 58ppb

≺50× √50×

100

203

50

 - 온도가 200℃ 이상인 지열 시스템의
 ⑦ 경우 광물학적 및 지구화학적 특성이 현저하여 암석 중의 주성분원소 및
 미량원소의 함량 분포가 변화함

- 미국 Utah주 Roosevelt Hot Springs의 지열지대에서 토양 중의 Hg 배경값은 29ppb이고 최대 배경값은 58ppb였으며 특히 토양 중의 Hg 함량이 20ppb인 등함량 곡선이 215℃의 등온지열선과 잘 일치함

토양 중 수은을 이용한 문화재 탐사

발굴되지 않은 진시황릉 위로 토양 중 수은 농도 조사 (Yong and Tong, 1985)

6. 해저광물지구화학 탐사

• 해저광물지구화학 탐사법

1. 수중 TV 카메라

- 1979년, John Edmond 등이 9,000' 심도의 Alvin Baja California N21에 내려가 black smoker를 발견
- 1983년, Steve Scott 등이 지진 조사 및 crater of undersea volcano를 찾기 위해 미국 Oregon주 해안에서 떠나 태평양 심해로 이동

2. 시료채취

- 준설(dredging): surface deposit (nodule or placers)
- 시추(coring): sea floor sediment의 section corer

Black Smoker

Hydrothermal H₂S-rich hot fluids

해저광물지구화학 탐사 대상 지역

- Mid-Ocean Ridge
 Spreading center
- Island Arc
 - Subduction zone

Mineralogical composition of seafloor polymetallic sulfide deposits (Herzig and Hannington, 1995)

	Mid-Ocean Ridge Deposits	Back-Arc Deposits	
Fe-sulfides	Pyrite, marcasite, pyrrhotite	Pyrite, marcasite, pyrrhotite	
Zn-sulfides	Sphalerite, wurtzite	Sphalerite, wurtzite	
Cu-sulfides	Chacophyrite, isocubanite	Chacophyrite, isocubanite	
Silicates	Amorphous silica	Amorphous silica	
Sulfates	Anhydrite, barite	Anhydrite, barite	
Pb-sulfides		Galena, sulfosalts	
As-sulfides		Orpiment, realgar	
Cu-As-Sb-sulfides		Tennantite, tetrahedrite	
Native metals		Gold	

Bulk chemical composition of seafloor polymetallic sulfides (Herzig and Hannington, 1995)

Element	Mid-Ocean Ridge	Intraoceanic Back-Arc Ridge	Intracontinental Back-Arc Ridge	
Pb (wt. %)	0.2	1.2	11.5	
Fe	23.6	13.3	7.0	
Zn	11.7	15.1	18.4	
Cu	4.3	5.1	2.0	
Ва	1.7	13.0	7.2	
As (ppm)	300	1,000	15,000	
Sb	100	100	3,000	
Ag	140	195	2,766	
Au	1.2	2.9	3.8	
(N)	890	317	28	

Chemical composition of hydrothermal fluids at mid-ocean ridge and in backarc areas (Herzig and Hannington, 1995)

	Mid-Ocean Ridge	Back-Arc Ridge	
Zn (ppm)	5.5	196	
Cu	1.4	2.2	
Ba	1.4	5.4	
As (ppb)	17	450	
Pb	54	808	
T[°C]	350	334	
рН	3.6	2.0	

Mid-Ocean Ridge

Mid-Ocean Ridge

Spreading center에서 해수 순환 모식도 (Koski et al., 1982)

Fe/Mn ratios in the ferromanganese continuum and associated deposits

망간 단괴

해저 망간 단괴

Atlantis II Deep의 동서 방향 금속함량 (Holmes and Tooms, 1972)

Gold grades in polymetallic massive sulfides from the modern seafloor (Herzig and Hannington, 1995)

	Au (ppm)			A
	Range	Average	(N)	
Immature Back-Arc Ridges (intermediate to felsic volcanics)				
Lau Basin	0.01-28.7	3.1	75	
Okinawa Basin	0.60-24.0	3.8	28	
Central Manus Basin	0.01-52.5	30.0	10	6058
Eastern Manus Basin	1.30-54.9	15.0	26	В
Woodlark Basin	8.10-21.0	15.0	5	
Mature Back-Arc Ridges (MOR-type volcanics)				
Mariana Trough	0.14-1.70	0.8	11	hi A
North Fiji Basin	0.01-4.30	2.2	17	
Mid-Ocean Ridges (MORB)	0.01-6.70	1.2	890	2440

A: Large gold grain (Au) as free inclusion in Fe-poor sphalerite

B: Gold grain (Au) composed of aggregates of submicron colloid-sized particles in a late fracture within sphalerite

참고 문헌

- 전효택(역), 1991, 광물탐사를 위한 암석지구화학 (G.J.S. Govett 지음), 기전연구사, 469p.
- Brooks, R.R. et al., 1995, Biological systems in mineral exploration and processing : Ellis Horwood, 538p.
- Gubins, A.G., 1997, Geophysics and geochemistry at the millenium : GEO F/X, 1068p.
- Hale, M. and Plant, J.A., 1994, Drainage geochemistry : Elsevier, 766p.
- Klusman, R.W., 1993, Soil gas and related methods for natural resource exploration : Wiley, 483p.
- Levinson, A.A., 1980, Introduction to exploration geochemistry : Applied Publishing Ltd., Wilmette, 924p.
- Pieters, C.M. and Englert, P., 1993, Remote geochemical analysis : Elemental and mineralogical composition : Cambridge, 594p.
- Rose, A.W., Hawkes, H.E. and Webb, J.S., 1979, Geochemistry in mineral exploration : Academic Press, London, 657p.
- Thonton, I. and Howarth, R.J.(ed.), 1986, Applied geochemistry in the 1980s : Graham and Trotman, London, 347p.