Statistics for
Civil & Environmental Engineers

%@j Risk and Reliability

+» Definition
» The risk that a system is incapable of meeting the demand is
defined as the probability of failure p; over the specified system
lifetime under specified operating conditions. System reliability,
denoted by r, is the (complementary) probability of nonfailure,

r=1-p,

+» Capacity (X) vs. Demand (Y)
» Strength vs. Load, or Resistance vs. Force
> e.g.
Landing capacity vs. the flight arrival rate of an airport
spillway capacity vs. flood discharge

% Capacity and Demand are both Uncertain!
i @clsia
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+»» Definition

» The safety factor of a system, treated as a random variable and
defined as Z= X/Y, is the ratio between capacity X and demand
Y for the system
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@J Factor of Safety Example(1-1)

‘2| Example 9.1. Structural safety factor for independent lognormally distributed
load and strength. Consider a structure whose load-carrying capacity, or strength X,
and load ¥ are independent lognormal variates, with means and standard deviations
Ix. iy and oy, oy, respectively. In this case, the safety factor, Z = X/¥, is also a
lognormal variate. As shown in Egs. (4.2.28),

Hin@ = Hinn — B = Inpex = $In(l + V3 = In gy + $In(1 + V3),
where Vy = ox/px and Vy = oy uy are the coefficients of variation of X and ¥,
respectively, and

TRz = Tgxy + Togyy = ML+ VEY +In(h + V).
In terms of the medians, my and my. it follows from Fe. (4.2.284) that
pini = Inimx) — InCmy) = In(my “my).

where the ratio (my/ my) represents the median safety factor. Since In(Z) is normaily
dissributed with mean gy 7, and standard deviation iyz;, the random variable [n(Z}—
finezy )/ Fing) 1S a standard normal variate. Therefore, the probability of failure is found

using Eq. (9.1.2) as

pr = Fz(ly = qg(l‘m)= ¢(7m)

Ty Tiniz)

- In(mmy - my) )
Jn(l + vI) + (] + ¥2)

where d(-) denotes the cdf of the standard normal distribution. Accordingly, the relia-

BLite bility of the structure, r = Pr{Z > 11 = | - Fz(1) = | — py,is
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@ Factor of Safety Example(1-2)

‘;f' Thus. if X and ¥ are independent and lognormatly distributed, the reliability is a func-
1 tion of the median safety factor and the standard deviation Ty 1)

Consider, for example, a rigid dimber beam (see Fig. 2.1.3) with an estimated av-
erage strength of 39.1 N/fmm? and coefficient of variation of 25 percent. If the beam is
designed to carry a load of 24.0 N/mm’, with a coefficient of variation of 15 percent, one
can compute the failure probability as follows, Since the means and coefficients of vari-
ation of strength X and load ¥ are wy = 39. I N/mm?, Vy = 25, uy = 24.0 N./mm?,
and Vy = .15, respectively, assuming X and ¥ are independent and lognormally dis-
tributed,

Tz, = [In(l +.25% + In(l +.159)]' ¥ = 288,

tmzy = I0(39.1) = 4 In(l + 25% ~ In(24.0) + {In(1 +.15%) = 0.469.

The probability of failure is thus
p; = Fz(l) = $(—.469 288) = $(-1.628) = .052,

which indicates that the beam has a reliability of 94.8 petcent. The pdf's of X and ¥
are shown in Fig. 9.1.4a, and the corresponding cdf”s in Fig. 9.1.4b. The pdf and cdf

of the safety factor Z are shown in Fig. 4.1.5.
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@ Factor of Safety Example(1-3)
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FIGURE 9.1.4
Timber strength and load illustration: pdf's (a) and cdf's {b) for independent lognor-
mally distributed X and ¥
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FIGURE 9.1.5
Timber strength and load illustration; pdf and
cdf of safety factor Z = X/Y for independent
lognormalty distributed X and ¥,
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+» Central Safety Factor

b lg=

where uy: expected capacity, £y: demand

+» Nominal Safety Factor
» Nominal value of capacity: x'= uy - hyoy
» Nominal value for the demand: y'= u, + h,oy
»> Safety factor

zZ =

where hy and hy are sigma units of their respective functions
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Q“ Factor of Safety Example(2-1)
=

Example 9.2. Central safety factor for a pumping station. A pumping station was
designed using a safety factor ¢” of 1.8, or 9/5. An engineer has the ta_sk of assessing
the reliability of the system without any knowledge of possible fluctuations of capacity
and demand. Therefore, the coefficients of variation of capacity and demand are as-
sumed 10 be equal, (Vy = Vy = V), as are the sigma bounds (hy = fy = A} From
Eq. {9.1.6).

. ,(Lx—hyVﬂ_lu.xl'hV_ 1—hV

T heVony  m 1 R TR

The engineer further assumes that the possible range of Vis .l = V = 5 and (}_E
h = 1, so that the possible range of AV is O = AV = (.5. Since nc other information
is available regarding the moments of 2V, the principie of maximum entropy suggests
that &V can be medeled as a uniformly distributed variate with £ [AV] =1 4, which
yields{/z" = 5 3. Therefore, 10 improve system reliability in order to achie‘vc a safgty
factor of £, the engineer must increase the nominal capacity x” of the pumping station
from (9/5)y° 10 (5 3951y = 3y".

Factor of Safety Example(2-2)

 ix=py— (Ox+ ay)
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* FIGURE 9.1.6
xand y Sigma bounds of capacity X and demand Y.
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I @ Safety of Margin

% Definition
» The safety margin of a system is the random difference

S = X - Y between capacity X and demand Y of the system

Hs=pos FIGURE 9.1.7
Safety margin, s pdf of safety margin 5.

N Example 9.3. Structural margin of safety for independent normally distributed
load and strength. Consider a structure whose load-carrying capacity or strength X
and load Y are independent normal variates, with means and standard deviations Ly,
py and ox, oy respectively. In this case, the safety margin, § = X — Y, is shown in
Example 3.60 to be also a normal variate with

- 2 _ g2
ps = Bx ~ @y, ot = oi + ol

Since § is normally distributed with mean s and standard deviation o5, the random
variable (§ ~ ps) o is a standard normal variate, and the reliability of the structure
is, from Eq. (9.1.9),

0— ps Ms Hx =y
r=1—F(0)=l*¢(——)=l—[l—¢(— =d{=—==
s as as ‘/a-xj + air
where ®(-) denotes the cdf of the standard normal distribution.
For example, consider again the rigid timber beam of Example 9.1, and assume

normal and independent strength X and load ¥. The probability of failure can be com-
puted as follows. Since

py = 39.1 Nimm?%, Vy = .25, uy = 24.0 N'mm?, Vy = .15,

one has
oy = 39.1x.25 = 9.775 Nimm®, oy = 24.0 X .15 = 3.6 Nimm?,
5o that
s = 39.1 = 24.0 = 15.1 N/mm?, s = (9.775° + 3.6%)" ! = 10.41 N/mm>.
et —




%@J Safety of Margin Example(1-2)
£

The required probability of failure is
py = F5(0) = &(—15.1 10.41) = P(-1.450) = .074,

which indicates a beam reliability of 92.6 percent. The pdf's of X. ¥ and § are shown in
Fig. 9.1.8a, and the corresponding cdf's are given in Fig. 9.1.8b. The estimated reliabil-
ity from the independent normal model differs from that obtained from the independent
lognormal model by only about 2 percent.
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FIGURE %.1.8

Timber strength and load illustration: pdf (a) and cdf (b) of safety margin § for inde-
pendent normally distributed X and ¥.
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%@j Safety of Margin

+» For Normal Capacity and Demand
» Mean and variance
Hs= fy- y
6s2=0x*- 205 OxOy* Oy*
» Probability of failure

»> Reliability cdf of the standard normal distribution

.
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@@j Safety of Margin Example(2-1)

Example 9.4, Irrigation water supply. During the growing season the expected
demand Y from an irrigation scheme is 10 units with a coefficient of variation of 50
percent, which accounts for fluctuations associated with weather variability. The mean
availaplg water X, which is diverted from a river barrage, is 20 units, with a coefficient
of variation of 20 percent, which accounts for fluctuations associated with hydrologic
variability in that season. Because of the relationship between hydrology and climate,
the natural water availability often tends to decrease when the demand increases, so
Fha: the con‘-el_ation coefficient between X and Y is negative. The estimated value of Pxy
is —.5. An irrigation engineer needs to estimate the reliability of the system assuming
that both capacity X and demand ¥ are normally distributed variates.
The standard deviations of capacity and demand are

ox = Vypuy = .2 X 20 = 4 units,

ay = Vypy = .5 % 10 = 5 unils,
respectively. The safety margin, § = X — ¥, is normally distributed with mean

M5 = Uy = gy = 20 = 10 = 10 units,

and standard deviation

o5 = (0% — 2pyyoxoy +03)' T = (242X Sx4x 5+ 5 L = 781 units.

vju‘ MEchaa
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(| The required risk of failure is
‘ pr = Fs(0) = ®(~10/7.81) = | — D(1.28) = 1 - 9 = |,

and the associated reliability is 90 percent. In order to increase the reliability of the
system to 95 percent, the diversion of a neighboring stream is considered for the pur-
pose of increasing the mean capacity. Assuming that both Vy and pxy do not change,
the mean capacity px must be increased by a factor of a so that

r=1-Fg0) = akx My = .95;
(‘/azy.} Vi - 2pyyaVypxox + s
that is,
apy — KRy _ 1.65
JauiVi —2pxraVxpyox ol
Hence,
20a - 10 20a - 10
= = 1.65,
V42 + 205X 4% 5% a+ 5 16a? + 20a + 25
which yields @ = 1.20. This means that the new source must provide a 20 percent

increase in the average water availability if the goal is to increase the reliability of the
irrigation system to 95 percent.

vju‘ MEcfaa
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@ Reliability Index
5@4

«»» Definition

» The reliability index of a system, denoted by B, is defined as

the ratio between the mean and standard deviation of the safety

margin of the system
» Reliability index
B=puslog
» Reliability index in terms of the first two moments of the
capacity and the demand functions

L
@ Reliability Index Example(1-1)

Example 9.5. Structural reliability index for normatly distributed safety margin.
Consider again a structure whose load-carrying capacity, ot strength, X and load ¥ are
independent normal variates (see Example 9.3). Since r = ®(us o), ris a function
of the ratio ws @5, which is the safety margin expressed in units of o5, that is, the
reliability index 8. Therefore, system reliability can be written as r = ®(B), and the
corresponding probability of failure is givenby py = 1 —r = 1 — ®(B). For normal
S, avalue of 8 = 0 corresponds to r = .5 (50% reliability). Similarly, 8 = 1.28 with
90% reliability, B = 1.65 with 95%, B =.2.33 with 9%, B = 3.10 with 99.9%. and
B = 3.72 with 99.99%. This illustrates that the level of reliability is a function of
both the relative position of fx(x) and fy(y), as measured by the mean safety margin
s = Wx — vy, and the degree of dispersion, as measured in terms of the standard
deviation o's = (o + 03)" °. The reliability index B reflects the combined effect of
both these factors. A useful approximation of the failure probability is given by

pr=2x10"8,

which can be used for reliability analysis with 3 taking values from | to 2.7, as shown
in Fig. 9.1.9.
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0 1 o _2 . 3 4 Power approximation of the probability of failure
Reliability index, as a function of the reliability index.

For example, in the case of the rigid timber beam of Example 9.3, where strength
X and load ¥ are normal and independent variates,

B = ps o5 = 1511041 = 1.451,

so that the reliability index is 1.451 sigma units. The power approximation of the cor-
responding probability of failure is

py=2x107"%" = 071,
The previously computed value of py = 1—-(1.451) = .073, so the error in the power

WP e approximation is about 3%.
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¢ Influence of correlation

B, = ) zc_l
\/L/C —2pv(+1
» ForVy=V,=V

wherev=V, /V,, p =Py

» To measure the correlation coefficient between capacity and
demand is not an easy task, because it depends on many
factors

» What would happen if we neglect ,0?
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FIGURE 9.1.10 )
BVy versus { for different correlation coefficients be-
tween capacity X and demand ¥ for (a) Vi 'Vy = 1.
{b) Vy/Vy = 2,and (¢} Vy/Vy = 4.
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@ Reliability Index Example(2)
. (™)

) Example 9.7. Irrigation water supply. Consider again the irrigation problem of Fx-
ample 9.4, and assume that correlation between capacity and demand can be neglected.
Assuming that pyy = O yields

as = (o} + o' = (4 + 59" 2 = 6.40 units
and
B = us’/os = 10/6.40 = 1.56;

thus, the estimated reliability of the system is r = §(1.56} = .94, If compared with the
original estimate of 90 percent, this result illustrates that an engineer who disregards
the correlation between capacity and demand can come to the misleading conclusion
that the goal of 95 percent reliability can be reached.

One can also use Egs. (9.1.15) and (9.1.16) to compute the failure and non-
failure probabilities if either X or ¥ or both are nonnormal. This is a straightforward
exercise for two independent lognormal variates, as shown in the following example.
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i Reliability Index
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% For Lognormal Capacity and Demand

> ForVy=V,=V

VlVy =1
0.0 +
1 2 3 4 5
Central safety factor, {
FIGURE 9.L.11

Bron Bue versus { for different correlation cocffi-
cient between capacity X and demand Y.

Reliability Index Example(3-1)

Example 9.9. Thermal poHution in a river. The discharge ¥ from the cooling systern
of 2 thermal power plant flows into a river. To prevent thermal pellution in the river, it
15 desirable thut ¥ does not exceed a fraction of the natural flow ¢ in the river. say, X —
O/, where g denoles a constant that depends on the difference in temperature between
the two flows. An engineer wishes to evaluate the risk thal thermal pollution occurs in
the river. Axsume that ¥ is normally distributed with mean 2 m3/s and coefficient of
variation 20 percent, as shown in Fig, 9.1.12.

Fely)

exponential Fy(x)

gamma F{x}

cdt of Xand Y

FIGURE %.1.12
cdt’s of capacity X and demand ¥ for
Example 9.9

a 2 4 6 8 10

For the period in which the river receives the discharge Y. Q) car be approximared
by an exponential distribution with mean 40 m*s, and &« = 5. Inflow ¥ and streamflow
(2 are further assumed 10 be independent variates. The problem is approached by using
the univariate Rosenblatt transformation in order to determine the equivalent normal
distribution for the exponential capacity X Since X is exponentially distributed with
rmean 403 = 8 m'/s,

Jetx) = {178)exp(—-x 8) = I25exp{ .125.x)
and

Fyix) = | —exp(—.125x)




.' Reliability Index Example(3-2)

*‘ n The mean o and the standard deviation o, of the equivalent normal distribution for
the exponential capacity X are found from the assumption that, at failure point x7,
Dlix" ~ ey diay] = Fy(x'),

where ®(-) denotes the cdf of the standard normal variate. Thus,

g = 1 — o @ [Fylx)]

where ®~'(£) denotes the £th guantile of the standard normal distribution. It also fol-
lows from the previous assumption at the failure point that, by equating the correspond-
ing probability densities at the failure point,

(Liayp)plix’ — py) o] = felsh,
where ¢(+) denotes the pdf of the standard normal variate. Hence,
o = ST [Fx(x ) fxlx"):
By substitulion,
oy = S{O7'[1 —exp(— 125x"}]} [125exp(—.125x7)]
and
pye = 10— o[ - exp(—.125x7),

whereas py = 2m¥sandoy = .2%2 = 4ms.

7 MEdsin

Because the failure point is unknown, the problem is solved by iteration. It x
| m/s is taken as the initial value,

gy = HIO[1 - exp(—.125 % 1)]} [.125exp(=.125 X 1)]
= @b ' 118)] . 110
= ¢(—1.188) .110 = 1.79

L
@ Reliability Index Example(3-3)
%

and
Uy = x — o ® 1 —exp(—0.125x 1)) = 1 = 1L7997'(0.118) = 3.12;

these are used in Eq. (9.1.14) to obtain, for independent capacity and demand,

B = (sy — pr) (@2 +0})' P = (312-2) (179 + 049 ? = 061

For the second iteration, one takes x* = 1.5, which yields 8 = 0.74. As shown in
Table9.1.1, this procedure is then followed until the difference between two subsequent
estimates of 3 is negligible. Accordingly, one obtains B = 0.74; that is, the reliability

of the system r = $(.74) = .77.
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L' Reliability Index Example(3-4)

TABLE 9.1.1
Risk evaluation for thermal i i i
pollution in a river with exponenti istri
et ponentially distributed
Ziponential capacity, X
Meanof X = 8
A =125
Seration process
Point of failure, r* = 1.0 1.5 2.0 25 21 1.9
Fix) = 01175 0.1710 0.2212 0.2684 0.2309 02114
. f(;f )= 0.1103 0.1036 00974 0.0915 00961 0.098€
ml [F(x'}] = ~1.188 ~-0.950 -0.768 -0.618 -0.736 —0.802
&® NFG) = 0197 0.254 0297 0.330 0.304 0.289
Meanof X* = 3.12 3.83 4.34 473 443 425
Standard deviation of X* = 179 245 305 3.60 317 2,94
©ormal demand, ¥ ‘
Meanof ¥ = 2

Standard Deviationof ¥ = 0.4

L aluation of reliability index, 8
Bg= .6l i 76 i) 76 26

Reliability: ®(g8) = 777
Risk: | —(B) = 223

@ij Reliability Index Example(3-5)

v f One can also use the same approach for a capacity distribution different from

k the exponential. For example, if X 1s gamma distributed with mean 8 m*/s and its
coefficient of variation is | 2 (see Fig. 9.1.12), the parameters of the gamma pdf are
found to be, by the method of moments,

F= (U Vel=(1V2¥ =2 A=rpuy=28=.25m"

3s.

Thus, from Eq. (4.2.7).
fr(x) = [ T(N]x" 'exp(—Ax) = .25 xexp(—.25x).

and, forr = 2,

Ar

(A e _ _ - - 25¢
Fx(x) = L ﬁz exp(—Az)dz = 1 — (1 + Ax)e =1-(1+.25x)e .

1m’ s,

Using this procedure, one gets, for the initial value of x*
op = {071 - (1 +025X 1) X exp(=0.25 X D]Y/[(0.25 1) X exp(=0.25 X 1)]
=126,
g = 1 126X @71 = (14025 X 1) X exp(~0.25 X 1)] = 3.44;
and, using these values in Eq. (9. 1.14),
B = (g — pr)/ (B + 0} 2 = (344 - D)/(126 + 0.4%' 2 = 1.09.

After some iterations, the reliability index is found to be 1.32. Hence, from Eq. (9.1.16)
P reliability is about 91%. The procedure is detailed in Table 9.1.2.

-
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@ Reliability Index Example(3-6)

TABLE9.1.2
Risk evaluation for thermal pollution in a river with gamna distributed streamflow

_smma capaciry, X

Meanof X = 8
Coefficient of variationof X = 707
= 2
A= 25
e ralion process
Point, x* = 1.0 L5 290 25 i9 21
F(x?) = 00265 0.0550 0.0902 0.1302 0.0827 0.0979
fix) = 00487 0.0644 0.0758 0.0836 0.0738 00776
P '[F(x)] = -1.935 —1.598 -1.339 -1.125 -1.387 —1.294
SPNF ()} = 0061 oan 0.163 0212 0.152 0173
Meanof X* = 344 4.26 4.87 535 476 498
Standard deviation of X* = 1.26 1.73 215 253 2.06 223

wormal demand, ¥

Meanof ¥ = 2
Standard deviation of ¥ = 0.4
Ecaluation of reliability index, B
B8 = 109 1.27 1.32 1.31 1.31 | Pic>)
Reliability: ®{8) = 0.906
Risk: 1-b(g)y = 0.094

f@ﬁ Performance Function

¢ Definition
» The performance function of a system is the random function
d(X, Y) of capacity X and demand Y describing system
performance, related to its possible failure, or limiting state

of interest, given by g(X, Y)=0

< For reduced variables
X =(X- Hy)l oy, Y =(Y - Hy)l oy

aX,Y)= o, X —=6,Y +uy—-py=0
¢ Reliability index for uncorrelated variables

B A B¢ A
gix. Y=o
X = {ovio)Y - (ax - po v \ ,
0
; »
| Safe state
B: -
x| A i
Safe state ;
]
Lt e
RERE R R RI AT T Dy
FIGURE 9.1.14 FIGURE 9.1.15
Failure state. safe state, and limiting state in a reduced co- Failure state, saf.c state, and nonlmear limiting state in
ordinate system. a reduced coordinate system.
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+ For Mutually Independent Variates




D Performance Function Example(1)

i i the
Example 9.10. Lake phytopiankton. Climate and water quality are among
factors influencing the quantity of phytoplankton in shallow Iake§. Assome that the
rate of increase of phytoplankton can be expressed as a linear function g(X1, X;. X3) of

three variables: the temperature of water X;, global radiation X,, and the concen-
tration of mutrients X;. The equilibrium corresponds to the limiting state of interest,
81, X3, X3} = 0, and positive growth rates must be avoided 1o prevent eutrophica-

'- Performance Function Example(2)

Although it is observed that temperature and radiation have no effect on the
concentration of nutrients, so that pi3 = oy = 0, mutually they are highly correlated.
with p1z = .8. The equilibrium function is

B X, Xs) = ag + ey Xy + a2 X + a3 X,

with ag = ~1.5mg/m*, 3, = 0.08 mg/Am®-°C), a; = 0.01 mg/m W, and a3 = 0.05.
Other variables should be incorporated, such as those accounting for predation and
natural wastage; thesc are included in the constant ap because of difficulties in esti-
mating them separately. The reliability index is then computed using Eq.(9.1.29). The
numerator is given by

ap + drp +appuy +asps = —1.5+ .08 x 16 +.01 X 150 + .05 x 100 = 6.28,

tion, Field observations indicate that X;, X», and X3 can be modeled as normal variates
with the following means and coefficients of variation:

pi=16°C, pg = 150Wim%, a5 = 100 mpm’

and the argurnent in the square root of the denominator is

ot + ol + gl + 2ajespro oy
+ 201830130103 + 2aamypraaaos = 087 X 82 + 012 X 452 + 052 x 707 + 2

and H(—08) X (—01) K. 8XEX45+0+0 = 1332
Vi=.5 Vy =3 V; =7 Thus,
Thus, B = 6.28/1/1332 = 6.28/3.65 = 172,
o =8°C o =45Wm', o3 = Dmgm’ and, from g, (9.1.16),

Fo= DLI2) = 957,

This means there is a 96 percent chance that the equilibrium situation is preserved: that
is, the risk that the algal biomass will increase is only 4%.

+» Chapter 9

Problems
9.3/9.5/9.7/9.12/9.18
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