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Ch.2 Fluid Statics

2.1 Pressure-Density-Height Relationship
Fluid statics

~ study of fluid problems in which there is no relative motion between fluid elements

— no velocity gradients
— no shear stress

— only normal pressure forces are present

At center;
P, p

¥4

Padydz ———| A
dz

» Static equilibrium of a typical differential element of fluid
- vertical axis = Z - axis = direction parallel to the gravitational force field
- Newton's first law

F = external force:
pressure, shear, gravity

2F=0
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Ch.2 Fluid Statics

>F=0: XF =p,dz—pdz=0 (2.1)
¥

Assume unit thickness
in y direction; dy=1

2F,=0: X pgdx—pydx—dW =0

(2.2)
imwhich p=1(x.2) Z—p = variation of pressure
X
D, = p_@d_x D = p_l_@d_x ) with X direction
g ox 2 ’ ox 2
p —p—@% p _F)‘F@E ()
° oz 2 ° oz 2

dW = pgdxdz = ydxdz 3)

Substituting (1) and (3) into (2.1) yields

dF, :(p—@%)dz—(p+a—pd—)(}dz :—a—pdxdz =0
OX oX 2 OX

- —==0 (A)

Substituting (2) and (3) into (2.2) yields

dF, = ( p _a_pgj dx — ( p +@E)dx —ydxdz = —a—pdzdx —ydxdz =0
oz 2 oz 2 oz
op dp . . .
— — =—=—y=—pQ0 (partial derivative — total derivative because of (A))

e

2-3

op
—=0 (-.p=f I
™ (. p= fn(z only))




Ch.2 Fluid Statics

Pi=DP, =D

0 P=o
t ~Z

OX

~ no variation of pressure with horizontal distance

~ pressure is constant in a horizontal plane in a static fluid

v

Py=Pp=Pe=Pp=Pp=Pr=Pg=Pyy,+pgh

PHi.P;

FIGURE 3-9
The pressure is the same at all points on a horizontal plane in a given fluid regardless of geometry, provided that the

points are interconnected by the same fluid.

of hydrauliclift

FIGURE 3-10
Lifting of a large weight by

a small force by the application
of Pascal’s law.
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Ch.2 Fluid Statics

d
(2) d—p = —y (minus sign indicates that as Z gets larger, the pressure gets smaller)
yA
d
— —dz= @
/4
z p, d
2_ dZ _ J‘ 2_p
Z Py Y

Integrate over depth

@ -2)=—] P[P

For fluid of constant density (incompressible fluid; » = const.)

Pi=b
v

Z,—2,=h=

. pl_p2:7(22_21):7h

SoP= p2+7/h

~ increase of pressure with depth in a fluid of constant density — linear increase

~ expressed as a head N of fluid of specific weight ¥
N Ap
~ heads in millimeters of mercury, meters of water; — =h (m)

[Cf] For compressible fluid, ¥ = fn(z or p)

[Re] External forces

1) body force - forces acting on the fluid element

(2.4)

(2.5)

- gravity force, centrifugal force, Corioli's force (due to Earth’s rotation)

2) surface force - forces transmitted from the surrounding fluid and acting at right angles
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Ch.2 Fluid Statics

against sides of the fluid element

- pressure, shear force

* Manometer or Piezometer

Piezometer
columns Tl

=

g?____f’, ,,,,,, _y
)

- Gage shows pressure, p

Fig. 2.2

h = height of a column of any fluid

2
PUNIMT) _ 5 102 p(kN/m?)
9.81 kKN/m

N

h (m of H,0)=

Yall

* For a static fluid

&+ Z1 =&+ Z2 =const.

4 /4
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Ch.2 Fluid Statics

Lk Horizontal datum plane

* For a fluid of variable density (compressible fluid)

~ need to know a relationship between P and ¥

~ oceanography, meteorology

[IP 2.1] The liquid oxygen (LOX) tank of space shuttle booster is filled to a depth of 10 m
with LOX at -196°C. The absolute pressure in the vapor above the liquid surface is 101.3 kPa.

Calculate absolute pressure at the inlet valve.

[Sol]

From App. 2 (Table A2.1) Patm l —

p of LOX at -196°C = 1,206 kg/m’

Py = Pam + 7 1L0x h LOX

p, = 101.3 kPa+ (1,206 kg/m®) (9.81 m/s”) (10 m)

=101.3 kPa+ 118,308 kg'm/s*/m’

=101.3 kPa+ 118,308 kPa

= 219.6 kPa absolute

2-7



Ch.2 Fluid Statics

2.2 Absolute and Gage Pressure
1) absolute pressure = [ atmospheric pressure + gage pressure for p > Pam

atmospheric pressure - vacuum for p < Pam

2) relative (gage) pressure — P, =0
[ Bourdon pressure gage ~ measure gage pressure = open U-tube manometer

Aneroid pressure gage ~ measure absolute pressure = mercury barometer

- gage pressure is normally substituted by "pressure"

* Mercury barometer (Fig. 2.5)

~ invented by Torricelli (1643) — measure absolute pressure/local atmospheric pressure

~ filling tube with air-free mercury

~ inverting it with its open end beneath the mercury surface in the receptacle

2-8



Ch.2 Fluid Statics

[IP 2.4] A Bourdon gage registers a vacuum of 310 mm of mercury;

P =100 kPa, absolute. pressure

Find Absolute pressure.

[Sol] absolute pressure = 100 kPa —310 mmHg

=100 kPa—-310 101.3kPa ) 58.7 kPa
760

[Re] App. 1
760 mmHg = 101.3 kPa = 1,013 mb — 1 mmHg = 101,300 / 760 = 133.3 Pa
1 bar = 100 kPa = 10’ mb
760 mmHg = 760x 10~ mx13.6x9,800 N/m® = 101.3 kN/m*

= 101,300 N/m? / 9,800 N/m> = 10.3 m of H,O
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2.3 Manometry

~ more precise than Bourdon gage (mechanical gage)

l Patm

Fig. 2.7

(1) U-tube manometer

~ over horizontal planes within continuous columns of the same fluid,

( o )
pressures are equal | *.*—=0
OX
- P=p,

plsz+7|
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_— Patm — 0
p,=0+yh

P, =P, P+ 71 =0+yh

~p,=yh—7l

(i1) Differential manometer

~ measure difference between two unknown pressures

Py = Ps

p4:px+71|1 p5=py+]/2|2+)/3h

P+l = py+72|2+73h

SR Py = Yol +h =7,

If y,=y,=y, and X and Y are horizontal
-h

Py — py:73h+7w(|2_ 1)

=yh+y,(=h) =0, -r,)h

head: Mz(ﬁ—qh
Vw Vw
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(ii1) Inclined gages

~ measure the comparatively small pressure in low-velocity gas flows

p,=yh=ylsin@

reading of | > reading of h — accurate

(iv) Open-end manometer

air-velief

K.-:Jvalve

Po = Ps = Pc
Po = Pa—7aZ
pc: patm+7My

Pa= Pam T 7MY T7aZ

head : &:@+7—My+z
Yo Van VA
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(v) Measure vacuum
P, =0,
Pi=Pat7aZtruy
P, = Pam
Pat7aZ+ 7wy = Pam

Pa=Pam = 7aZ=7nY

Pa < Pary —> VACUUM

(vi) Differential manometer
P =D,
P = Pa—7Z4
P=Pg =7Zg t7uY

S Pa—VZIA= P V2T IMY
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Ch.2 Fluid Statics

Pa—Pe=7(Zp—Zg)+¥yY

==yY+ruY=(ru =Y

Pa— Pg :(7M _1jy
4 Y

If y=y,— M=(s.g.M -1)y

4!_:;;:8
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Differential
manometer
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Ch.2 Fluid Statics

For measuring large pressure difference,
— use heavy measuring liquid, such as mercury S.g.=13.55— makes y small
For a small pressure difference,

— use a light fluid such as oil, or even air S.Q. <1

* Practical considerations for manometry
(D Temperature effects on densities of manometer liquids should be appreciated.
@ Errors due to capillarity may frequently be canceled by selecting manometer tubes of

uniform sizes.

[IP 2.5] The vertical pipeline shown contains oil of specific gravity 0.90. Find P,

Qil (0.90)

¥
15—

Mercury
(13.57)

[Sol]

pI:pr / 7f:S-g-X7/W

=p. +(0.90x9.8x10*)x3
pl pX ( ) patm = O

p, = (13.57x9.8x10°)x 0.375

o p, =23.4kPa (kN/m’)
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2.4 Forces on Submerged Plane Surfaces
* Calculation of magnitude, direction, and location of the total forces on surfaces submerged
in a liquid is essential.

— design of dams, bulkheads, gates, tanks, ships

* Pressure variation for non-horizontal planes

@»_

0z -7

P=Yhy !
( Pressure prism

Center of pressure

Fig. 2.8
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Dams & gates
Spillway

o T
S arddang Mon o
D (heyang )

Sopriayf (%)

Arch dam

FIGURE 3-23

Hoover Dam.

Courtesy United States Department of the Interior,
Bureaw of Reclamation-Lower Colorado Region.
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2SZH o2 (EHEH0|E)
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v =

E3 (dat 3+)
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ol54 71371

o4 F44
G

W
=t

ALY ol

2-22



Ch.2 Fluid Statics

P. 4-70

OW 4,59 fR2 AoE
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Movable
welr with
gate
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Ch.2 Fluid Statics

* Pressure on the inclined plane

Centroid

of area

« Centroid of area A ~ata depth h,

Center
resultant force

of

~ at a distance |C from the line of intersection 0-0

(1)Magnitude of total force
First, consider differential force dF
dF = pdA = yhdA
h=Isina

— dF =ylsinadA

Then, integrate dF over area A

F = IAdF = 7sinaIA|dA

2-25
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Ch.2 Fluid Statics

A
in which j IdA = Ist moment of the area A about the line 0-0

=A-l|

C

in which |C = perpendicular distance from 0-0 to the centroid of area

~F=yAl_sina

(pressure at centroid) x (area of plane)

Substitute h, =1, sina

F=yhA (2.12)

(i1) Location of total force

dF = ylsinadA

Consider moment of fore€ about the line 0-0

dM =dF -1 = yI’d sina

M =["dM =ysina [ I*dA

A
where I |2dA = second moment of the area A, about the line 0-0 = Lo o
S M =ysinal, (a)
By the way,
M=F- |p (total force x moment arm) (b)

|p = unknown
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Combine (a) and (b)

FI, =y, sina (c)

Substitue F = y1_sin o Ainto (c)

Yl sinaAl =yl sina

2
oy LA

c

POOLA LA LA (2.14)

c

— Center of pressure is always below the centroid by —=

C

—as |, (depth of centroid) increases |, —1 decreases

* Second moment transfer equation

_ 2
loo=1.+I A

| .= 2nd moment of the area A about a axis through the centroid, parallel to 0-0

— Appendix 3

1) Rectangle
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3
A=bh, yc=ﬁ, |c:m
2 12

hC=a+(h—yC)=a+g

F=yh A= 7(a+gj(bh)

2) Semicircle
Ye
x |

_[ 2 14420109760
128 187
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3) Quadrant

al2

alf2

A=ab. I, =ab¥12

(a) Rectangle

bi2

al2

al2

A=abfi2, I, o=ab¥36

() Triangle

FIGURE 3-28

The centroid and the centroidal moments of inertia for some common geometries.

_7rd4 y _ﬂ
256°°° 3rx
I =1+y2A
_xd* (4rY
256 \ 37
(= 1
256 3671
=0.05488r*
Hi2
=

2
zd
16
4
¥4
R
C R l
X
R
A=mR &, -=7RY4
(b Circle

i

==X

PR

A=aRY2, I,

1 ar

I

o =0.109757R"*

(e} Semicircle

2-29
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A=mqab, I = Trabd

{c) Ellipse
¥
: ¢
1T e
e -1 - 4_5
e

A=mabl2, I
(f) Se

o= 0.10975Tah’

miellipse
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(ii1) Lateral location of the center of pressure for asymmetric submerged area

!'\'Cént:roidof s
| area

X

| ~ Center of pressure

J

axis 0-0 Moment axis

Fig. 2.10

a. For regular plane
(i) divide whole area into a series of elemental horizontal strips of area dA

(i1) center of pressure for each strip would be at the midpoint of the strip (the strip is a

rectangle in the limit)
(ii1) apply moment theorem about a vertical axis 0-0
dF =yh dA=1vlsinadA (a)

dM = x_ dF =X ylsin adA

Integrate (a)

M = J-AdM = J-chl sin adA (b)
By the way, M =X F (c)
Equate (b) and (c)
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X,F = I Xyl sin adA

I .
X, =Eysma_[XC|dA (2.15)

b. For irregular forms
~ divide into simple areas

~ use methods of statics

[Re] Moment theorem

— The moment of the resultant force is equal to the sum of the moments of the individual

forces.
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[IP 2.9] A vertical gate: quarter circle

Moment axis

-

Fig. Problem 2.9

[Sol]
(i) Magnitude

4r

4
=—=—-(1.8)=0.764;
yc)quadrant 372_ 37[( )

h.=0.3+0.764 =1.064

T
Fouaa = YN A=9,800(1.064) (Z(l -8)2j =26.53 kN

(i1) Vertical location of resultant force

(ch _0.05488(1.8)* 0213m
auad (1.064)(;’(1.8)2)

—>1,=1.064+0.213=1.277m

c
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(ii1) Lateral location of the center of pressure
Divide quadrant into horizontal strips

Take a moment of the force on dA about y-axis

dM = 7hdA - (moment arm) = 9800(y + 0.3)(xdy)(§j

9800 9800 /

T(y +0.3)x’dy = T(y +0.3)(1.8° — y*)dy

M = jol'gg(y +0.3)(1.8% - y?)dy =18575N -m

By the way, M =F_ ., X,

X, =18575/26.53x 10° =0.7m right to the y-axis

2-33
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2.5 Forces on Submerged Curved Surfaces

dF = yhb dL

Liquid

Haorizontal projection
/ of the curved surface

Verlical projection
of the curved surface

Free-body diagram
of the enclosed
liquid block

FIGURE 3-32
Determination of the hydrostatic force acting on a submerged curved surface.

* Resultant pressure forces on curved surfaces are more difficult to deal with because the
incremental pressure forces vary continually in direction.

- Direct integration

Method of basic mechanics
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1) Direct integration
- Represent the curved shape functionally and integrate to find horizontal and vertical
components of the resulting force

1) Horizontal component
F. = [dF, = [yhbdz

where b = the width of the surface; dz = the vertical projection of the surface element dL

location of Fiy:  take moments of dF about convenient point, e.g., point C
z,F, =J‘zdFH :Jthbdz

where z, = the vertical distance from the moment center to Fy

i) Vertical component
F, = [dR, = [yhbdx

where dx = the horizontal projection of the surface element dL

location of Fy:  take moments of dF about convenient point, e.g., point C
X, K =J‘xdFV =Ithbdx

where X, = the horizontal distance from the moment center to Fy

2) Method of basic mechanics
- Use the basic mechanics concept of a free body and the equilibrium of a fluid mass
- Choose a convenient volume of fluid in a way that one of the fluid element boundaries

coincide with the curved surface under consideration
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- Isolate the fluid mass and show all the forces acting on the mass to keep it in

equilibrium

» Static equilibrium of free body ABC
SF =F.—F, =0 o Fy = Foe = 7h Ay
SF =F -W,,. —F,. =0 SR = Fe + W
Fac =1NAsc =YHA =W yere
W 5 =weight of free body ABC

" F\; =weight of ABDE

» Location

From the inability of the free body of fluid to support shear stress,

— FH, must be colinear with Fy

— Fv' must be colinear with the resultant of W,z and F,..
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[IP 2.10] p. 59
Oil tanker W = 330,000 tone = 330,000x10°kg
Calculate magnitude, direction, and location of resultant force/meter exerted by seawater

(7 =10x10°N/m®) on the curved surface AB (quarter cylinder) at the corner.

52 m

[Sol] Consider a free body ABC

ZT
< | I
ol 1.5m | A
¢———————— — ey
| {,
|
| Z.I" FV’
24m | lF’ l
H
| Fyae
L(—XI,———» <
I “{{BC
| X, ~
| Y
B C
)—-%0‘75 m =~
FBC
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h :22.5+g:22.5+1j5:23.25

(1) Horizontal Comp. c

Fy = Fac =Y, A=10"x [22.5 + %SJ x (1.5x1) = 348.8 kN/m

1x(1.5)°
e 53050 12 _5375.00081=23.258 m
A 23.

25x1.5

Ip:|c+|

c

L2y = 23.258 —-22.5=0.758 m below line OA

=24-23.258=0.742 m above line BC

(i1) Vertical Comp.

ZFZ = Fyc — F\) ~Wyge =0
~F, =F ~W, g =yh,A—yVol.

=10* ><24><(1.5><1)—104[1.5x1.5—%7z(1.5)2j><1:355.2kN /m

» To find the location of F,’, we should first find center of gravity of ABC using statics

Take a moment of area about line OB

M) L (15 %, x0.483 = 2.25x 222
3z 4 2

X, = 1.1646 m

[Cf] From App. 3, for segment of square

2 r 215

XC:_ = — :1.165m
34—-n7 34-nx
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Now, find location of force Fv'

Take a moment of force about point O

R, x X, = Fge x0.75 =W 5. x1.1646
355.2xx,=360x0.75-4.83x1.1646

X, =0.744 m right of OB

[Summary]

i) Magnitude of Resultant force F

F =/(348.8)* +(355.2)* =497.8kN/m

ii) Direction &
0 =tan"' L tan ™' (ﬂj =455
F, 348.8

i11) Location
Force acting through a point 0.742 m above line BC and 0.744 m right of B

o, =tan™ (%j =44.47°
0.758

a, =tan™ (@j = 44.47°
355.2

a, =a, — F act through point O.

o /* Fy
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* Pressure acting on the cylindrical or spherical surface
- The pressure forces are all normal to the surface.
- For a circular arc, all the lines of action would pass through the center of the arc.

— Hence, the resultant would also pass through the center.

» Tainter gate (Radial gate) for dam spillway
All hydrostatic pressures are radial, passing through the trunnion bearing.
— only pin friction should be overcome to open the gate

pin friction (radial gate) <roller friction (lift gate)

ol 54 71371 Aol :
Trunnion
A A .
_ pin
A% FFA~ 23510 = :
ga8s : 7 AL A
g AN
AR T N
upApe) o] — i .

20

gl 6-15 EIeIE] 2HI(Self & Steel, 1987)
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2.6 Buoyancy and Floatation

* Archimedes' principle
I. A body immersed in a fluid is buoyed up by a force equal to the weight of fluid displaced.
II. A floating body displaces its own weight of the liquid in which it floats.

— Calculation of draft of surface vessels, lift of airships and balloons

(1) Immersed body

PA

Isolate a free body of fluid with vertical sides tangent to the body

- F1'= vertical force exerted by the lower surface (ADC) on the surrounding fluid

le = vertical force exerted by the upper surface (ABC) on the surrounding fluid
Fl,_ le =F3
F; = buoyancy of fluid; act vertically upward.

For upper portion of free body

ze:F; _Wz_PzA:() (@)
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For lower portion

>F=F-W,+PA=0 (b)

Combine (a) and (b) /7 Yh

F.=F -F, =(P-P)A-(W, +W,)

(P, — P,) A= yhA =weight of free body
W, +W, = weight of dashed portion of fluid

S (P =P)A—-(W, +W,) =weight of a volume of fluid equal to that of the body

ABCD

S Fg =Yqug (volume of submerged object) (2.16)

(i1) Floating body

For floating object

F. =7 (volume displaced, ABCD) F, =y,ABCD
Wagcoe = ¥V aecoe W =y, ABCDE

where .= specific weight of body
2-42
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From static equilibrium:  F; =W 5c

Y Vaseo = VsV ascoe

_ s
Viasco = V ascoe
f

[Ex] Iceberg in the sea
Ice s.g.=0.9

Sea water s.g.= 1.03

~0.9(9800)

= =097V
sub 103(9800) total i

otal

» Stability of submerged or floating bodies

Metacenter ~,
| III YI
. M

I BT
FIGURE 3-46 ( le 7

A floating body 1s stable il the body is Lo
bottom-heavy and thus the center of P}si
gravity G is below the centroid B of
the body, or if the metacenter M is

Overturning

L Restoring

|
i monient
: . it t |
above point G. However, the body is | EHEHC) /
unstable if point M is below point G. (a) Stable (b) Stable (¢) Unstable

G, < M —stable, righting moment
G, > M —unstable, overturning moment

G,, G, =center of gravity

M = metacenter
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2.7 Fluid Masses Subjected to Acceleration

* Fluid masses can be subjected to various types of acceleration without the occurrence of

relative motion between fluid particles or between fluid particles and boundaries.

— laws of fluid statics modified to allow for the effects of acceleration

* A whole tank containing fluid system is accelerated.

aZ
4
T 7
dx
EFIZ(_ %) dx dz ""T dz —T> %
dp
sF=(-£-7)de ax

Fig. 2.15
* Newton's 2nd law of motion (Sec. 2.1)
> F=Ma
First, consider force
op dx op dx op
F=|p-———|dz—| p+—— |dz=| —— |dxdz 2.18
25 (p axz) (p axzj (ax (218)
>F, :(_@_yjdxdz (2.18b)
0z
mass

Then, consider acceleration

X: (—@J dxdz = (ldxdzJaX
OX g
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z: (_a_p — y) dxdz = (ldxdzjaZ
0z g

where mass = pvol.= Y dxdz x 1

?:—lax (2.19)
X g
@:_l(g +a,) (2.20)
0z g

— pressure variation through an accelerated mass of fluid

[Cf] For fluid at rest,

®_,
OX

o _

0z -7
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» Chain rule for the total differential for dp (App. 5)

op op
dp=—dx+—d
p ™ X+az 4 (a)

Combine (2.19), (2.20), and (a)

dp:—%axdx—%(g +4a,)dz (2.21)

« Line of constant pressure dp =0

—laxdx —l(g +a,)dz=0
g g

dz ( a, ]
S——=— (2.22)
dx g+a,

— slope of a line of constant pressure
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1) No horizontal acceleration: a, =0

@ _,
OX

.dp_ [g+a,
Cdz y[ g j

* For free falling fluid, a, =—@

o _,
dz

2) Constant linear acceleration

Divide (2.21) by dh

d__ f(ad grad
dh gdh g dh

Use similar triangles

&_a,
dh ¢

dz _a, +g
dh g

g =[al+(a+9y]"

Substitute (b) into (a)

|

(a)

(b.1)

(b.2)



Ch.2 Fluid Statics

dp_ g
dh g

— pressure variation along h is linear.
[IP 2.13] p. 70

An open tank of water is accelerated vertically upward at 4.5 m/s”. Calculate the pressure at a

depth of 1.5 m.

[Sol]

b __[9+3 ) 9500 N/m3)(Mj:—l4,300 N/m’
dz g 9.81

dp =-14,300dz

integrate

[ "dp =@14,300dz
0 0

p=-14,300[z];"*=14,300(~1.5—0) = 21,450 N/m® = 21.45 kPa

[Cf]For a,=0

p =vh=9800(1.5) =14.7 kPa

2-48



Ch.2 Fluid Statics

Homework Assignment # 2

Due: 1 week from today

Prob. 2.4

Prob. 2.6

Prob. 2.11
Prob. 2.26
Prob. 2.31
Prob. 2.39
Prob. 2.52
Prob. 2.59
Prob. 2.63
Prob. 2.76
Prob. 2.91
Prob. 2.98

Prob. 2.129
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