Chapter I Shear Strength of Soils

1.1 Background

- (1) Principal Stresses and Mohr Circle
 - **Principal planes**: Three orthogonal planes on which there are zero shear stresses.

• **Principal stresses:** The normal stresses that act on these three planes

The largest : major principal stress, σ_1

The smallest : minor principal stress, σ_3

The intermediate : intermediate principal stress, σ_2

At geostatic state in the horizontal ground, the horizontal plane and two vertical planes are principal planes.

When $K_o(=\sigma'_h/\sigma'_v) < 1$, $\sigma'_v = \sigma'_1$, $\sigma'_h = \sigma'_3$ and $\sigma'_2 = \sigma'_3 = \sigma'_h$ When $K_o(=\sigma'_h/\sigma'_v) > 1$, $\sigma'_h = \sigma'_1$, $\sigma'_v = \sigma'_3$ and $\sigma'_2 = \sigma'_1 = \sigma'_h$ • Some rules on stress description in soil mechanics

1) Usually, $\sigma_2 = \sigma_3$ or $\sigma'_2 = \sigma'_3$ (geostatic condition and axisymmetric condition).

2) Stresses are positive when compressive. Shear stress τ is positive when counterclockwise.

Advanced Soil Mechanics I

- **Mohr Circle** : The graphical representation of stress state of material element.
 - It can be determined with the normal and shear stresses of two orthogonal planes.
 - Given a Mohr circle, it is possible to find stresses in any direction by graphical construction using the Mohr circle. (Using origin of plane or pole)
 - The origin of planes (or poles) is a point on the Mohr circle where a line through O_p and any point of the Mohr circle is parallel to the plane on that given point.

- The maximum shear stress ($\tau_{max} = (\sigma_1 - \sigma_3)/2$) occurs on planes lying at ±45° to the major principal direction.

 \overline{GH} is parallel to $\overline{O_pE}$ and \overline{HJ} is parallel to $\overline{O_pF}$.

Fig.3 shows the plane that σ_1 , σ_3 act.

 \overline{CD} is parallel to $\overline{O_pB}$ and \overline{DH} is parallel to $\overline{AO_p}$.

Fig.3 shows the plane that σ_1 , σ_3 act.

• *p-q* diagrams :

- The stress state is plotted with stress point whose coordinates are

$$p = \frac{\sigma_1 + \sigma_3}{2}$$

$$q = \pm \frac{\sigma_1 - \sigma_3}{2}$$

$$\begin{cases} + \text{ if } \sigma_1 \text{ is inclined equal to or less than } \pm 45^\circ \text{ to the vertical } \\ - \text{ if } \sigma_1 \text{ is inclined less than } \\ \pm 45^\circ \text{ to the horizontal} \end{cases}$$

- Effective way to represent, on a single diagram, many states for a given specimen of soil.

• Representing the change of stress state during loading.

1) Vector curve

2) Stress path

 Locations of failure plane and failure stress conditions are defined in terms of effective stresses. (→ Based on drained strength envelope)

1) Drained tests (CD) (σ_1 acts on horizontal plane.)

2) UU tests

Failure Plane

Notes :
$$s_u = \frac{\sigma_{1f} - \sigma_{3f}}{2}$$

 τ_{ff} = shear stress at failure at failure plane = $s_u \cos \phi < s_u$

(2) Vector Curves

• Vector Curves : " Locus of stress states (shearing stresses and effective normal

stresses) on a potential failure plane for loading to failure."

Shearing Phase (**D** : Drained, **U** : Undrained)

Loading Method (**C** : Compression, **E** : Extension)

Ex) <u>CI</u>D <u>TX</u>C

- ↓ ↓ Testing device (**TX** : Triaxial, **PS** : Plane Strain) Consolidation phase
- **CI** : Isotropic Consolidation ($\sigma_1 = \sigma_2 = \sigma_3 = \sigma_c$)
- **CA** : Anisotropic Consolidation ($\sigma_{1^{\neq}} \sigma_2 = \sigma_3 = \sigma_c$)
- $\ensuremath{\text{CK}}_0$: Consolidation with zero lateral strain
- **U** : Unconsolidation

To plot the curves,

- 1. Assume ϕ' .
- 2. Plot Mohr circle for each load. (σ_1 ' and σ_3 ' are given from tests)
- 3. Find τ , σ_n ' on potential failure plane for each circle.
- 4. Connect points.
- Redraw if vector curve at peak or at large strain does not match with assumed failure envelop.

4. Find $\tau(=\tau_{ff})$, $\sigma'_n(=\sigma'_{nff})$ with measured pore pressure.

$$\sigma'_{3}(=\sigma'_{3f}) = \sigma_{c}(=\sigma_{3f}) - u_{e} \rightarrow \sigma'_{n}(=\sigma'_{nff}) = \sigma_{n}(=\sigma_{3nff}) - u_{e}$$

To draw vector curve,

- 1. Draw base line based on assumed ϕ .
- 2. Account for u_e at each stress level. \rightarrow Vector curve.

• Major Points

1. Pore pressure development

2. Typical behavior in CIU TXC tests

-Loose sands, Normally Consolidated Clays (NC)

- Dense sands,

Heavily Overconsolidated Clays

- Typical test (CIU) results for clay samples by varying consolidation pressure.

