1.2 Shear Strength of Granular Soils

(1) Drained shear strength (ϕ ',c'(=0))

(u_e=0)

• Parameters affecting drained strength

- 1) density
- 2) mineral composition
- 3) grain size distribution
 - ϕ '(well graded) > ϕ '(poorly graded)
- 4) grain shape
 - ϕ ' (angular particle) > ϕ '(rounded particle)

• Components of drained strength

- Energy is expended in 2 ways.
 - 1) overcome frictional resistance of soil
- 2) expand soil against confining pressure.

(+ particle breakage, particle rearrangement)

- For dense sand,

- Similar development can be made for TXC (based on drained test.)

$$(\sigma_c = \sigma'_c = \sigma_3 = \sigma'_3)$$

$$DS \rightarrow \mathcal{T} \qquad \sigma_{n}$$

$$TXC \rightarrow \sigma_{1}(=\sigma_{1e} + \sigma_{1R}) \qquad \sigma_{3}$$

Recall,
$$(\frac{\sigma_1}{\sigma_3})_f = \tan^2 (45^\circ + \phi'/2)$$

 $\therefore (\frac{\sigma_{1R}}{\sigma_3})_f = \tan^2 (45^\circ + \phi'_R/2)$ ------ Eq. (3)
 $\phi'_{CV}(\Rightarrow \phi' \text{ at constant volume})$

$$(\frac{\sigma_{1R}}{\sigma_3}) = \frac{\sigma_1}{\sigma_3} - \frac{dV}{d\varepsilon_1 V_0},$$

Therefore,

$$\tan^2(45^0 + \phi'_R / 2) = \left(\frac{\sigma_1}{\sigma_3}\right)_f - \frac{1}{(d\varepsilon_1)_f} \left(\frac{dV}{V_0}\right)_f$$

• Component of friction angle

- ϕ'_{μ} values (Terzaghi, peck, and Mesri, table 19.1)

Mineral	φ ['] _μ , Range, deg (Typical Value)				
Quartz	22-35 (26)				
Feldspar	36-38 (37)				
Hornblende	31				
Calcite	31-34 (33)				
Anthracite	31				
Chalk	30	1940-000 Juni 194			

- Breakage component (ϕ'_{B}) of ϕ'

For quartz sands, $\sigma_3 > 500$ psi, ϕ'_B becomes important.

For chlorite sands, $\sigma_3 > 50$ psi, ϕ'_B becomes important.

- Accordingly,

For low σ_3 , ϕ'_{CV} and ϕ_E are important.

For high σ_3 , ϕ'_{CV} and ϕ_B are important.

– For a given $\sigma_{3c^{'}}$

(Redrawn after Rowe(1962))

• To test our hypothesis

Run tests on dense samples with varying σ_3 '.

• The effect of relative density or void ratio, grain shape, grain size distribution, and particle size on ϕ'

By Cassagrande (Holtz and Kovacs, Table 11-2)

No.	General Description	Grain Shape	D ₁₀ (mm)	<i>C</i> .	Loose		Dense	
					e	$\phi(deg)$	e	$\phi(deg)$
1	Ottawa standard sand	Well rounded	0.56	1.2	0.70	28	0.53	35
2	Sand from St. Peter sand- stone	Rounded	0.16	1.7	0.69	31	0.47	37†
3	Beach sand from Plymouth, MA	Rounded	0.18	1.5	0.89	29	-	-
4	Silty sand from Franklin Falls Dam site, NH	Subrounded	0.03	2.1	0.85	33	0.65	37
5	Silty sand from vicinity of John Martin Dam, CO	Subangular to subrounded	0.04	4.1	0.65	36	0.45	40
6	Slightly silty sand from the shoulders of Ft. Peck Dam, MT	Subangular to subrounded	0.13	1.8	0.84	34	0.54	42
7	Screened glacial sand, Manchester, NH	Subangular	0.22	1.4	0.85	33	0.60	43
8‡	Sand from beach of hydraulic fill dam, Quabbin Project MA	Subangular	0.07	2.7	0.81	35	0.54	46
9	Artificial, well-graded mixture of gravel with sands No. 7 and No. 3	Subrounded to subangular	0.16	68	0.41	42	0.12	57
10	Sand for Great Salt Lake fill (dust gritty)	Angular	0.07	4.5	0.82	38	0.53	47
. 11	Well-graded, compacted crushed rock	Angular	-	-	-	-	0.18	60

(Holtz and Kovacs, Table 11-3)

Factor	Effect					
Void ratio e	e↑, φ↓					
Angularity A	$A\uparrow,\phi\uparrow$					
Grain size distribution	$C_{\mu}\uparrow,\phi\uparrow$					
Surface roughness R	$R\uparrow,\phi\uparrow$					
Water W	$W\uparrow, \phi\downarrow$ slightly					
Particle size S	No effect (with constant e)					
Intermediate principal stress	$\phi_{ns} \ge \phi_{rs}$ (see Eqs. 11-5a, b)					
Overconsolidation or prestress	Little effect					