(2) Shear Behavior of Sands (also clays)

• Most important factors in determining shear strength itself (for given soils).

i) Initial void ratio (density)

ii) Confining stress

• Critical State
$$\{\frac{dq}{d\varepsilon_a} = 0, \text{ and } \frac{d\varepsilon_v}{d\varepsilon_a} = 0 \text{ or } \frac{dp'}{d\varepsilon_a} = 0\}$$

for drained conditions;

 e_{cr} = critical void ratio = void ratio at which no volume change occurs as

shearing progresses.

for undrained conditions;

 σ'_{3cr} = critical confining stress = confining stress at which no excess pore

water pressure change occurs as shearing progresses.

1) CID TXC tests

- varying e_0 and $\underline{high}\;\sigma'_3$

SNU Geotechnical and Geoenvironmental Engineering Lab.

• Series of CID TXC tests with varying σ'_3 , e_0 .

 \Rightarrow The denser the sample, the higher the σ_{cr}

2) CIU TXC

Practically,

$$\sigma_c = \sigma'_c + u_b$$

- Why back pressure?

(1) to saturate the sample.

(2) to prevent cavitation in sample during shearing in heavily O. C. samples.

- Varying $\sigma_3'(=\sigma_c)$ with <u>low</u> e_0 .

(dense sand)

- Varying $\sigma_3^{'}(=\sigma_c^{'})$ with <u>high</u> e₀.

(loose sand)

 σ'_{3CR} (loose) < σ'_{3CR} (dense)

(1) ue development(undrained loading)

(2) volume change (drained loading)