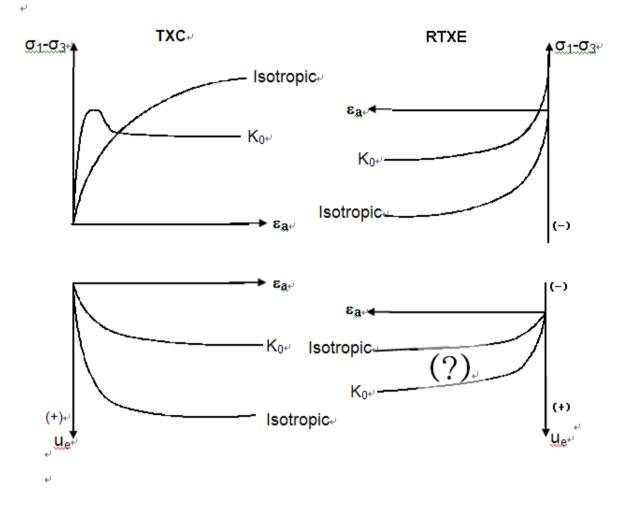
b) K_0 – consolidation condition.

- In field $\rightarrow K_0 \text{state.}$ In lab \rightarrow Generally isotropic state (triaxial test) to simplify the field conditions.

< For sedimented soils>

* Field : During sedimentation and subsequent loading (no lateral strain), soil structure is formed to resist efficiently to vertical loading.


 $(\rightarrow \text{anisotropy})$

Advanced Soil Mechanics I

- * Lab : During consolidating for undisturbed anisotropic samples isotropically, soil structure can be altered to have isotropic-inclined characteristics. And total confining stress $p'=(\sigma_1 + \sigma_2 + \sigma_3)/3$ is different from (larger than) that in field.
 - The effect of **isotropic consolidation** on undrained behavior of N.C. or lightly O.C. clays. ($K_0 < 1 \rightarrow p'_{iso} > p'_{Ko}$ and rearrange of soil structure during isotropic consolidation (more isotropic structure))
 - \Rightarrow Comparing the shear behaviors under isotropic consolidation with those under K_0 -consolidation
 - \Rightarrow Subsequent shearing also induces structure rearrangement to activate the effective resistance to the given shearing mode.

(1) Compression shearing.

- Soil structure: needs more strain to the peak and develops higher excess pore pressure and lower s_u.
- Higher p' induces higher s_u and possibly higher excess pore pressure during shearing.
- (2) Extension shearing.
 - Soil structure: increases s_u, and possibly (but not significantly) less strains to the peak and lower excess pore pressure.
 - Higher p' induces higher s_u and higher excess pore pressure.
- (3) Isotropic consolidation has no effect on ϕ' .

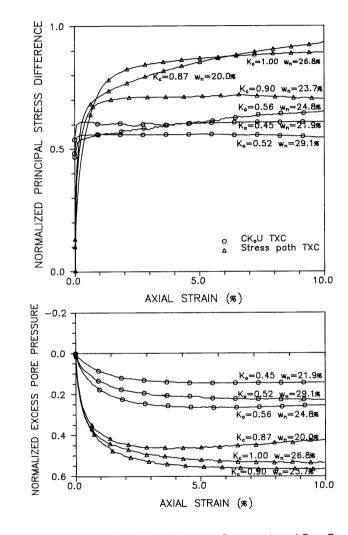


Figure 4-14 Consolidation Stress Ratio Effects on Stress-strain and Pore Pressure-Strain Response for Normally Consolidated Clays: Compression

environmental Engineering Lab.

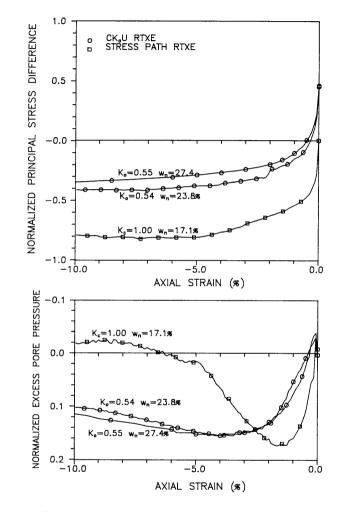


Figure 4-15 Consolidation Stress Ratio Effects on Stress-strain and Pore Pressure-Strain Response for Normally Consolidated Clays: Extension

	•	•
	Triaxial Compression	Trialxial Extension
Soil	$s_u \downarrow$ (Stiffness \downarrow)	${\sf s}_{\sf u}$ \uparrow (Stiffness \uparrow)
Structure Change	($u_e \uparrow$)	($u_e \downarrow$)
Increasing p'	su↑	su↑
	u _e (↑)	u _e (↑)

* The Effect of Isotropic Consolidation on She	aring Behavior.
--	-----------------

* Anisotropy of s_u (for NC or lightly OC clays).

$$\left(\frac{(s_u)_E}{(s_u)_C}\right)_i > \left(\frac{(s_u)_E}{(s_u)_C}\right)_{Ko}$$

* Mayne (1985), for 42 soil types,

For comp.,
$$(s_u / \sigma'_{vc})_{Ko} \approx 0.87 (s_u / \sigma'_{vc})_{iso}$$

For ext., $(s_u / \sigma'_{vc})_{Ko} \approx 0.60 (s_u / \sigma'_{vc})_{iso}$

* Sivakugan and et al.

Base on using K_0 (=1-sin ϕ ') and pore pressure parameter at failure, A_f for isotropic and K_0 – consolidation;

$$\frac{\left(\frac{S_{u}}{\sigma'_{vc}}\right)_{CKoUC}}{\left(\frac{S_{u}}{\sigma'_{vc}}\right)_{CIUC}} = \frac{K_{0} + 2(1 - K_{0})A_{f,i}}{K_{0} + 2(1 - K_{0})A_{f,Ko}} \left(A_{f,i}(1 - K_{0}) + K_{0}\right)$$

* Wroth

$$\frac{\left(\frac{s_u}{\sigma'_{vc}}\right)_{CKoUC}}{\left(\frac{s_u}{\sigma'_{vc}}\right)_{CIUC}} = \frac{3 - 2\sin\phi'}{3} \left(1 - a^2\right)^{\Lambda}$$

$$\frac{s_u}{\sigma'_{vc}}_{vc} = \frac{3 - \sin\phi'}{2(3 - 2\sin\phi')}, \quad \Lambda = 1 - \frac{C_r}{C_c}$$

* For heavily OC clays

 $K_0 = (1 - \sin \phi)(OCR)^{\sin \phi} \implies For \ OCR = 4, \ K_0 \approx 1$

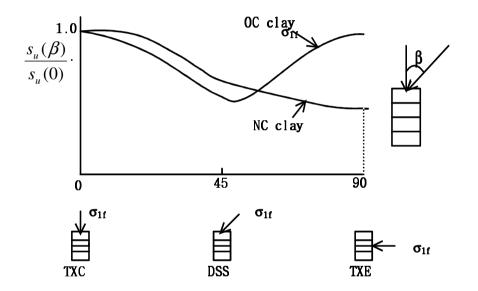
So, the higher OCR (<4), the lower anisotropy.

2) Shearing Conditions.

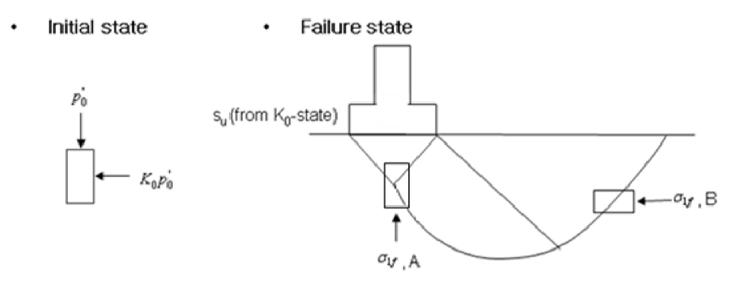
a) Anisotropy

2 types (1) Material \rightarrow Inherent anisotropy. 2) $K_0 \neq 1 \rightarrow$ Stress system anisotropy .

→ Caused by tendency of clay particles to become horizontally oriented during deposition (1 – D Compression).

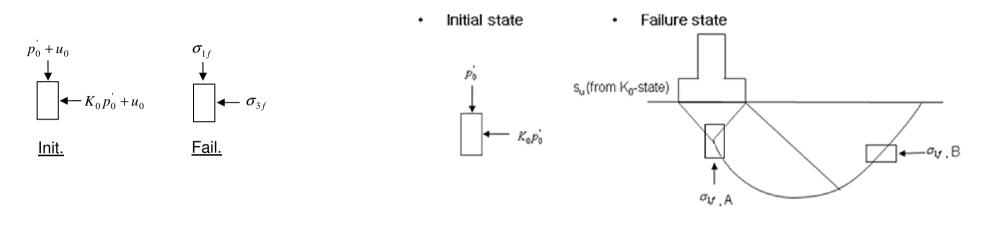

Anisotropy will affect

 $\rightarrow \phi', C' \implies \phi'_{ext} > \phi'_{com}$ (?).


 $\rightarrow \textbf{S}_{u.}$

- \rightarrow Deformation parameters (σ ϵ response).
- \rightarrow Pore pressure response.

As the direction of major principal stress changes, anisotropy of undrained strength $(s_u(\beta)/s_u(0))$ is shown as,



• Stress reorientation effects

We want to evaluate the change in strength caused by the rotation of principal stress direction (\Leftarrow stress system induced anisotropy due to K₀ \neq 1).

Point A

$$s_u = \frac{\sigma_{1f} - \sigma_{3f}}{2} = \frac{(\sigma_1 - \sigma_3)_f}{2}$$

Look at N.C. clays (c'=0), based on Mohr-coulomb criteria to define failure,

$$\sin\phi' = \frac{(\sigma_1 - \sigma_3)_f}{\sigma_{1f} + \sigma_{3f}}$$

By Algebra,

$$(\sigma_1 - \sigma_3)_f = \sigma'_{3f} (\frac{2\sin\phi'}{1 - \sin\phi'})$$
 (1)

Where $\sigma_{3f} = \sigma_{3f} - \Delta u - u_0$

$$=\sigma_{3i} + u_0 + \Delta\sigma_3 - \Delta u - u_0 = \sigma_{3i} + \Delta\sigma_3 - \Delta u$$

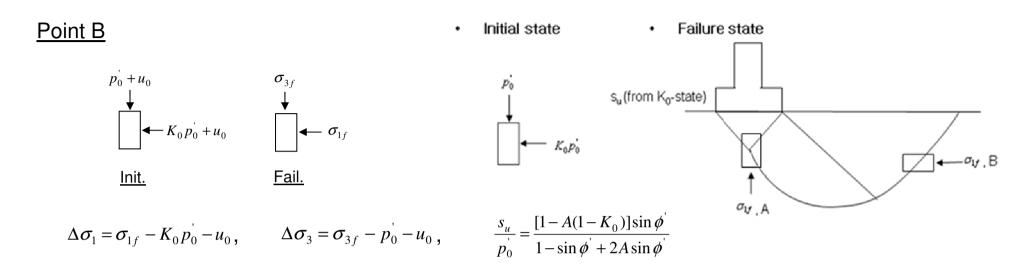
We know : $\Delta \sigma_1 = \sigma_{1f} - p_0 - u_0$

$$\Delta \sigma_{3} = \sigma_{3f} - K_{0}p_{0} - u_{0}$$

$$\Delta u = B(\Delta \sigma_{3} + A(\Delta \sigma_{1} - \Delta \sigma_{3})) \text{ (for saturated soil, B=1)}$$

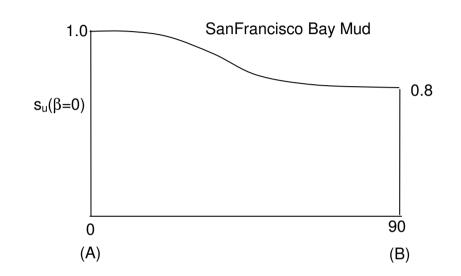
$$\sigma_{3f}^{'} = \sigma_{3i}^{'} + \Delta \sigma_{3} - \Delta u$$

$$= K_{0}p_{0}^{'} + (\sigma_{3f}^{'} - K_{0}p_{0}^{'} - u_{0})$$


$$-[\sigma_{3f}^{'} - K_{0}p_{0}^{'} - u_{o}^{'} + A(\sigma_{1f} - p_{0}^{'} - u_{0}^{'} - \sigma_{3f}^{'} + K_{0}p_{0}^{'} + u_{0}^{'})]$$

$$\sigma_{3f}^{'} = K_{0}p_{0}^{'} - A(\sigma_{1f} - \sigma_{3f} - p_{0}^{'} + K_{0}p_{0}^{'}) \qquad (2)$$

Sub. (2) \rightarrow (1). $(\sigma_1 - \sigma_3)_f = [K_0 p_0' - A((\sigma_1 - \sigma_3)_f - p_0' + K_0 p_0')](\frac{2\sin\phi'}{1 - \sin\phi'})$ $(\sigma_1 - \sigma_3)_f (1 + \frac{2A\sin\phi'}{1 - \sin\phi'}) = [K_0 p_0' - A(-p_0' + K_0 p_0')](\frac{2\sin\phi'}{1 - \sin\phi'})$ $\Rightarrow \frac{(\sigma_1 - \sigma_3)_f}{2p_0'} \left(= \frac{s_u}{p_0'} \right) = [K_0 - A(K_0 - 1)](\frac{\sin\phi'}{1 - \sin\phi' + 2A\sin\phi'})$


NC clays (typical values)

For $\phi = 30^{\circ}$ $K_0 = 0.5$ $A_{f}=1$ $\Rightarrow \frac{s_u}{p_0} = 0.3$

NC clays (typical values)

For $\phi = 30^{\circ}$ $K_0 = 0.5$ $A_f = 1 \implies \frac{s_u}{p_0} = 0.17$ Question : $\phi'_{com} = \phi'_{ext}$ (?), $(A_f)_{compression} = (A_f)_{extension}$ (?)

• Example of undrained strength anisotropy

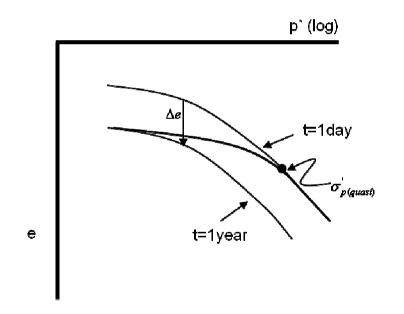
 \Rightarrow Combined effect of inherent and stress system anisotropy

Plane strain tests vs. Triaxial tests.

Plane strain tests comparing to triaxial tests gives; (the effect of intermediate stress σ_2)

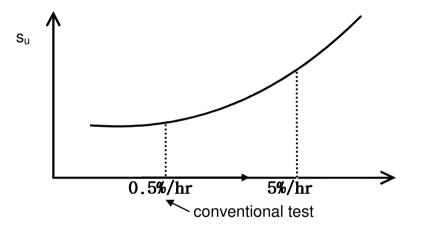
(1) Slight increase (5± %) in s_u .

Loading direction	$s_u(TX)/s_u(PL)$
β=0°	0.92±0.5 (5 clays)
β=90°	0.82±0.2 (4 clays)


(2) Increase ϕ ' by 2±2°.

③ Lower strain at failure and increase tendency of the strain softening in plain strain tests,

perhaps because of the more general formation of failure plane.


b) Aging effect.

Aging \rightarrow increase undrained strength, owing to decrease of e.

In lab \rightarrow one log cycle of time for secondary compression is required for aging.

c) Rate of shearing.

 $(s_u)_{conventional test} = 1.3 s_{u(0.5\%/hr}$