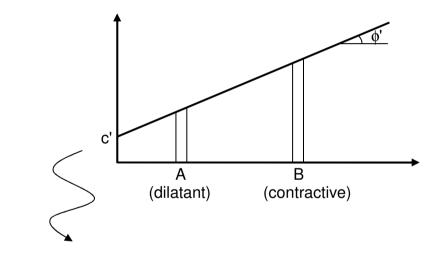
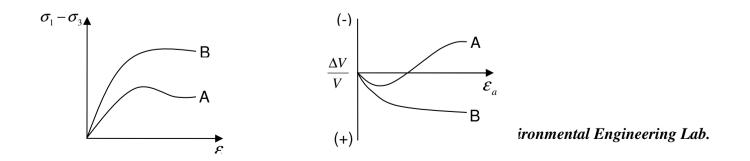
1.4 Special Soils

(1) Compacted clays (sandy clays or silty clays)

• Unique characteristics

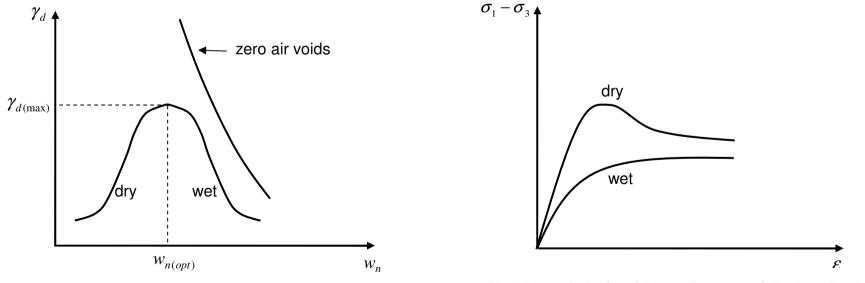

- i. Partially saturated
- ii. Dilatant at low pressures
- iii. Contractive at moderate pressures -
- iv. Highly anisotropic due to construction procedure
 - \rightarrow strength
 - \rightarrow permeability ($k_h = (9 100)k_v$)

boundary pressures : 15 – 20 psi


- Applications of shear strength characteristics on embankments
 - i. Drained shear behavior (CD)

τ

→ Design case : long-term loading of embankment (steady state of seepage)



has a large impact on stability analysis. \Rightarrow In design, it is common to assume c'=0.

- ii. Undrained shear behavior (uu behavior) on partially saturated soil
 - Design case : End of construction in dam

 \rightarrow Excess pore pressures in dam have not significantly dissipated by the time construction is complete.

SNU Geotechnical and Geoenvironmental Engineering Lab.

• How to get s_u value for design to maintain stability;

Run uu tests on samples prepared at various water content and γ_d . Select s_u values on the specific range of w_n and γ_d based on these results.

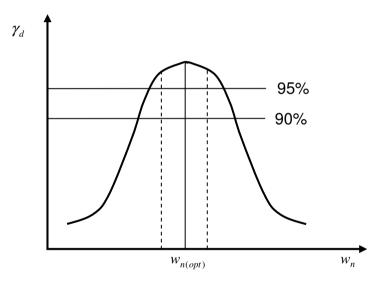
- Complicating factors
 - 1) Different compaction techniques (in field and lab) give different values of w_{opt} and $\gamma_{d(max)}$.
 - 2) Partial saturation makes strength data interpretation a little more complicated.
 - 3) Field control is difficult.

• Comment

1) If sample is "too dry",

① Strong, but hard to mix in field.

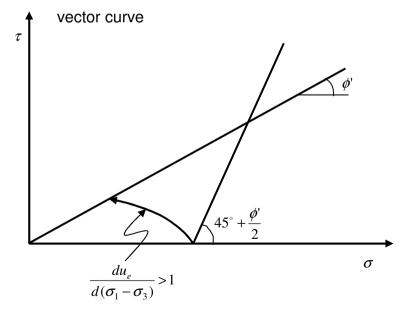
② Brittle behavior and can lose its strength when soil becomes saturated.


2) If sample is "too wet"

1 Ductile behavior

2 Weak, but no loss of strength upon saturation.

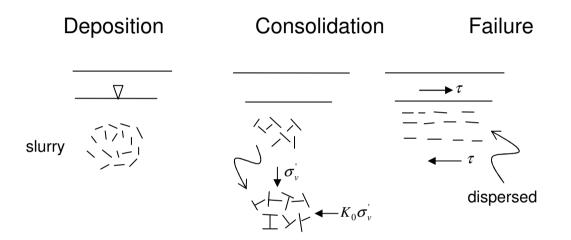
Ex) $w_{n(placement)} = w_{n(opt)} \pm 2 \%$.


 $\gamma_d \ge 95$ % of $\gamma_{d(max)}$ based on certain compaction method (i.e. Modified Proctor method)

(2) Sensitive Clays

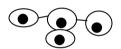
• Characteristics :

- i. Large strength loss upon remolding
- ii. $u_e(+)$ is very large at failure (A_f > 1).


SNU Geotechnical and Geoenvironmental Engineering Lab.

$S_t = Sensitivity = \frac{S_u}{S_{u(remolded)}}$	Name
1	Insensitive
	(compacted clay when $w_n > w_{opt}$)
1 ~ 2	Slightly sensitive
2 ~ 4	Medium sensitive
4 ~ 8	Very sensitive
8 ~ 16	Slightly quick
16 ~ 32	Medium quick
32 ~ 64	Very quick
> 64	Extra quick

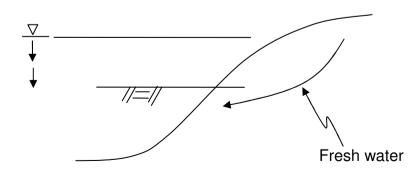
Factors causing sensitivity


	St
 Metastable particle arrangement 	8 ~ 16
 Silt skeleton with clay bonds 	4 ~ 8
 Leaching of salts 	> 64
Rupture cementing bonds between	8 ~ 16
grains	
 Ion exchange 	8 ~ 16
Weathering	1 ~ 4
 Add dispersing agent 	> 64

<u>Metastable particle arrangements (most lacustrine clays)</u>

<u>Silt skeleton covered with clay bonds (representative of some alluvial clays)</u>

"lean" clays or low plastic clays.

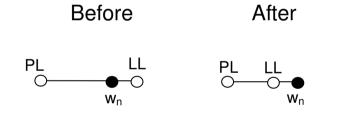


semi-flocculated state

Leaching of salt

 $S_t > 64$ (Marine clays)

- 1) Deposited in salt water environments. \Rightarrow Highly flocculated state.
- 2) Clay is lifted above sea level or sea level drops.
- 3) Change in local ground water regime such that fresh water starts flowing through the clay.
- 4) Fresh water leaches (removes) the salts (Na⁺).



ntal Engineering Lab.

Leaching

- \bigcirc \bigcirc reduces the attractive forces between clay particles.
- ② → lowers liquid limit because of ①, but w_n remains the same.

 \Rightarrow free water within the clay matrix.

(3) Varved Clays

• Characteristics

 \rightarrow Sharply layered with alternating layers of clay (winter) and silt (summer).

- \rightarrow Usually associated with glacial lakes.
- \rightarrow Soft-NC-to lightly OC.
- \rightarrow Highly anisotropic.

(4) Residual Soils

- 1. Soils that have been weathered in place.
- 2. Soils take an characteristics of parent material (rock) bedding planes and joint remnants.
- 3. Contain some light cementation.
 - (but sampling typically destroys this cementation).
 - \Rightarrow Hard to characterize strength and stiffness parameters in laboratory.