iv) CPT

• Schmertmann(1970)

; modified later by Schemertmann and Hartman(1978)

• Using strain influence factor (I_z)

Settlement =
$$\int \mathcal{E}_z dZ$$
, $\mathcal{E}_z = \frac{p}{E_s} I_z$

 $I_z = f(footing geometry, v)$

- \rightarrow Fig.1. and 2. in page 2-49,50 (based on theoretical, experimantal and numerical results)
 - ((ε_z or I_z)_{max} occurs not immediately under the footing but between 0.6r to 1.5r for circular footing) (r : radius of footing)
 - \rightarrow Vertical strains in sand deposits depend not only on the level of existing and added vertical stress but also on the existing and added shear stress.
- → Horizontal stress increment under the ground decreases more rapidly than vertical stress increment.

Fig. 1.

Theoretical and experimental distributions of vertical strain below center of loaded area.

Fig. 2 Nonlinear, stress dependent finite element model prediction of vertical strains under center of 10-ft diam. 1.25ft thick. concrete footing loaded on surface of normally consolidated sand with $\phi=37^{\circ}$.

<u>Recommended simplified form</u>

(modified by Schmertmann and Hartman(1978))

For $1 < \frac{B}{L} < 10$, linearly incorporate the stressed depth and the point of $I_{Z(max)}$.

Thus, $D_{f} \downarrow p_{f} \downarrow p'_{0} = \gamma' D_{f}$ $\Delta p_{net} = p - \gamma' D_{f}$

• Computation of immediate settlements.

where n = no. of layers in 2B or 4B.

 C_1 = coefficient for depth of embedment.

$$= 1 - 0.5 \frac{p'_0}{\Delta p_{net}} \ge 0.5$$

 C_2 = creep coefficient.

$$= 1 + 0.2 \log \frac{t(yrs)}{0.1}$$

 $t \equiv$ time when the value of settlement is desired.

• E_s determination with q_c values from CPT

 \rightarrow Continuous set of readings of $q_c. \rightarrow E_s.$

 \rightarrow Correlating q_c with E_s from screw plate tests.

$$E_s = 2.5q_c$$
 ($L/B = 1$) (Axi - symmetry)
 $E_s = 3.5q_c$ ($L/B \ge 10$) (Plane strain)

• Procedure.

1. Develop static core profile and divide into layers.

2. Fill in chart.

			2.5q _c (B/L=1)		$\frac{I_z}{E_s}\Delta z$
Layer	Δz	q _c	$E_s = 3.5q_c(B/L>10)$	Iz	
1					
2					
3					

3. Compute C₁, C₂

4.
$$S_e = C_1 C_2 \Delta p \sum_{i=1}^n \frac{I_{z(i)} \Delta z_i}{E_{s(i)}}$$

SNU Geotechnical and Geoenvironmental Engineering Lab.

 $\sum_{i=1}^3 \dots$

• Comments.

① If rigid boundary is close to foundation level, it can be accounted for by :

(2) If you have only N values, you can use the following correlations with CPT results. (but best to get a site specific N - q_c correlations).

Soil type	q _c (kg/cm ²)/N	E_{s}/N (q _c /N × (2.5 or 3.5))
i) Silts, sandy silts and slightly	2	5 ~ 7
cohesive mixtures.		
ii) Fine-medium grained clean sand.	3.5	9 ~ 12
iii) Coarse sand.	5	12 ~ 18
vi) Sandy gravels & gravels	6	15 ~ 21

③ Method is valid for first loading cases with adequate bearing capacity.

④ Results are conservative, if the sand has been preload.

- Geologic O.C. state.
- Roller compaction.

(As much as 100% lager than observed).

(5) Any values of E (i.e. pressuremeter E) can be used, if site specific correlations are made.

• <u>Long – Term Performance.</u> \rightarrow (Settlement by creep).

- Constant load. \rightarrow Not significant.
- Slightly fluctuating load \rightarrow might be $1.5 \times S_{immediate}$ after 30 years.
- Heavily fluctuating load \rightarrow might be 2.5 × S_{immediate} after 30 years.