

5. Plasmid Cloning Vectors

Plasmid

Plasmids

- Self replicating
- Double-stranded
- □ Mostly circular DNA (<1 kb~ > 500 kb)
 - Linear : Streptomyces, Borrelia burgdorferi
- Replicon
 - Maintained in bacteria as independent extrachromosomal entities : own replication origin
- □ Generally dispensable

Types of plasmids

- F plasmid (conjugative)
 - Carry genes to transfer the own plasmid to another cell
- R plasmid
 - Carry antibiotics resistant gene
- Degradative plasmid
 - Carry specific genes for the utilization of unusual metabolites
- Cryptic plasmid
 - No apparent functional coding genes

Conjugation

Plasmid

- Plasmid copy number
 - High-copy-number (relaxed)
 - 1~ 100 copies/cell
 - Low-copy-number (stringent)
 - 1~4 copies /cell
- Plasmid incompatibility
 - □ Inability of two different plasmids to coexist in the same cell
 - Same mechanism of replication and partitioning control
 - Incompatibility (Inc) group
 - Groups of plasmids which are mutually incompatible
- Host range of plasmid
 - Narrow-host-range plasmid
 - Specific replication origin
 - Broad-host-range plasmid

Features for high-quality cloning vector

Small size

- Decrease in transformation efficiency with plasmids larger than 15 kb
- Choice of unique restriction endonuclease recognition sites for cloning DNA
- Selectable genetic markers

Evolution of Cloning Vectors

Natural plasmids, e.g. Col E1, pSC101

pBR322 (Bolivar and Rodriguez, 1977) : combination of natural plasmids, Amp^R, Tet^R markers, 4.3 kb

pBR322 derivatives : more unique enzyme sites, other markers

pUC vectors : multiple cloning sites (MCS) into lacZ' encoding α -peptide of of β -galactosidase

pUC19 Plasmid Vector

α complementation

 $lacZ \Delta$ M15 lacks amino acids 11-41

- No tetramer formation of β -galactosidase
- Complemented by N-terminus of LacZ (α peptide)

Cloning Foreign DNA into a Plasmid Vector

Transformation and Selection

Transformation

Introduction of purified DNA into "competent" bacterial cells

Competency

- Natural: Active uptake under high cell density or starvation conditions
 - Gene transfer between bacterial species
 - Source of nutrient
- □ Induction of competency of *E. coli*
 - Treatment with cold CaCl₂ → heat shock at 42°C for 2 min
 - Wahing cells with low salt buffer \rightarrow electroporation

Transformation

- Deletion of endA1
 - No endonuclease production

Selection of Transformed Cells

- Cloning into BamHI site of pBR322
- Selection for clones containing insert DNA in the plasmid
 - Transformation and selection on plated medium containing ampicillin
 - □ Selection for tetracyclin-sensitive clones
- Confirmation of the plasmid

Making a Gene Library

Creating a library

- Subdividing genomic DNA into clonable elements and inserting them into host cells
- □ A complete library
 - Library containing all of the genomic DNA of the source organism
- DNA fragmentation by partial digestion
 - □ Low concentration of restriction enzyme
 - Shortened incubation time
 - Library size
 - > 3 time the amount of DNA in the genome
 - □ 4X 10⁶ genome, 1000 bp insert \rightarrow require 12,000 clones

Determination of Library Size

- Human Genome size: 2.8 X 10⁶ kb
- Size of random DNA fragment: 20 kb

f: ratio of the length of the average insert to the size of the entire genome

20/2.8 X 10⁶

N : Number of independent recombinants

P: Probability of including any DNA in a random library of N

$$N = \frac{\ln(1-P)}{\ln(1-f)} = \frac{\ln(1-0.95)}{\ln(1-7.14 \times 10^{-6})} = 4.2 \times 10^{5}$$

Screening Strategies

- Sequence-dependent screening
 - □ : Use Hybridization of homologous sequences
- Screening of expression library
 - Screening by Immunological Assay
 - Screening by protein activity

Screening by DNA Hybridization

Denaturation

□ Breaking base pairing by heating of alkaline treatment

Renaturation

Annealing of denatured strands by slow cooling

DNA hybridization

- Attachment of denatured ss target DNA on membrnae (nitrocellulose, nylon)
- Annealing with labeled single stand probe (100 to 1000nt)

Labeling of DNA Probes Using Random Primers

Non-radioactive Detection: Chemiluminescence

Screening a Library by Colony Hybridization

Screening by Immunological Assay

Detection of Ag-Ab reaction by chemiluminescence

Screening by Protein Activity

- Screening by enzyme activity assay
 - e.g. lipase: grow cells in the presence of trioleoglycerol and fluorescent dye rhodamine
 - Orange fluorescence halos
- Functional (genetic) complementation
 - Complementation of mutant growth on specific medium

Cloning DNA Sequences that Encode Eukaryotic Protein

Generation of cDNA library

First-strand DNA synthesis from mRNA

Removal of the RNA template

Second-strand DNA synthesis

dsDNA

Isolation of Polyadenylated mRNA

cDNA Cloning Strategies-1

cDNA Cloning Strategies

0960MA05_3A

Limitation of cDNA Cloning Strategy

- 3' end bias for oligo-dT hybridization
 Use random primer: produce smaller fragments
- Difficult to isolate full length clones
 - □ Reverse transcriptase from AMV or MMLV
 - Limited processivity of reverse transcriptase
 - Intrinsic RNase H activity

Obtaining Full Length cDNA: Selection of 5' mRNA ends

Obtaining Full Selection of 5' mRNA ends : Oligo-capping

