Chapter 6 Manipulation of Gene Expression in Prokaryotes

6.1. Gene Expression from Strong and Regulatable Promoters

Gene Expression from Strong and Regulatable Promoters

- Constitutive expression of foreign protein
 - Can be detrimental to the host because of the energy drain
 - □ Can cause plasmid instability
- Regulatable promoters
 - □ *E. coli lac*, *trp*, *tac* (-10 *lac* + -35 *trp*) promoter
 - \Box Bacteriophage λpL promoter
 - Bacteriophage T7 gene10 promoter

Lac Operon

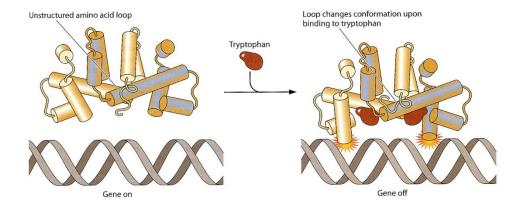
Genes: LacZ, LacY, LacA for lactose utilization

Repressor: Lacl

- Represses gene expression by binding to lac operator
- DNA binding activity is inhibited by binding to lactose or isoproply-β-D-thiogalactopyranoside (IPTG)
- Activator: CAP (catabolite activator protein)
 - Activates gene expression by binding to the promoter
 - DNA binding activity is increased by cAMP binding under low glucose conditions

Lac Promoter

Glucose concentration	Lactose concentration	cAMP concentration	lac promoter-operator region	Level of transcription
Low	Low	High	CAMP lac repressor Promoter Operator Gene	Low
High	Low	Low	lac repressor Promoter Operator Gene	Low
High	High	Low	Promoter Operator Gene	Low
Low	High	High	CAP Promoter Operator Gene RNA polymerase	High


Trp Promoter

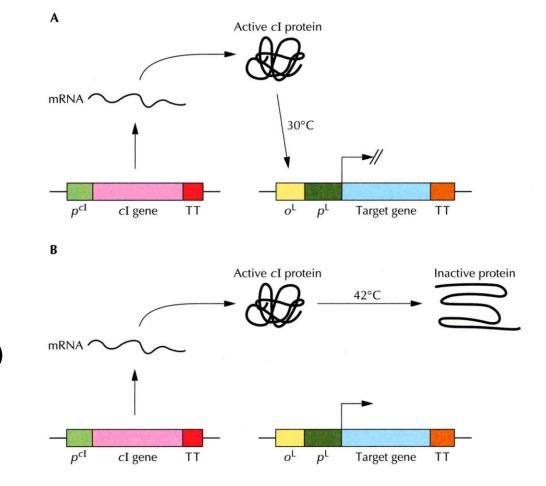
Genes: genes for Trp biosynthesis

Trp Repressor

Binding to the operator in the presence of Trp

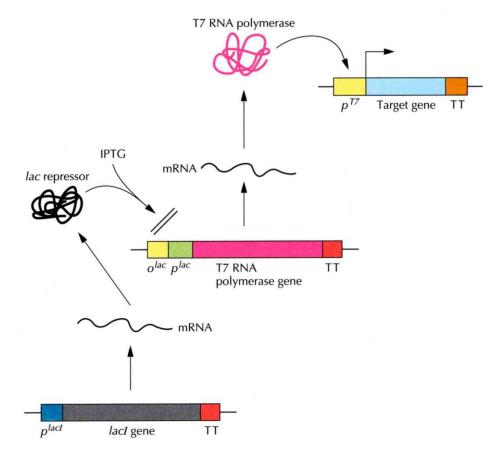
Leaky expression

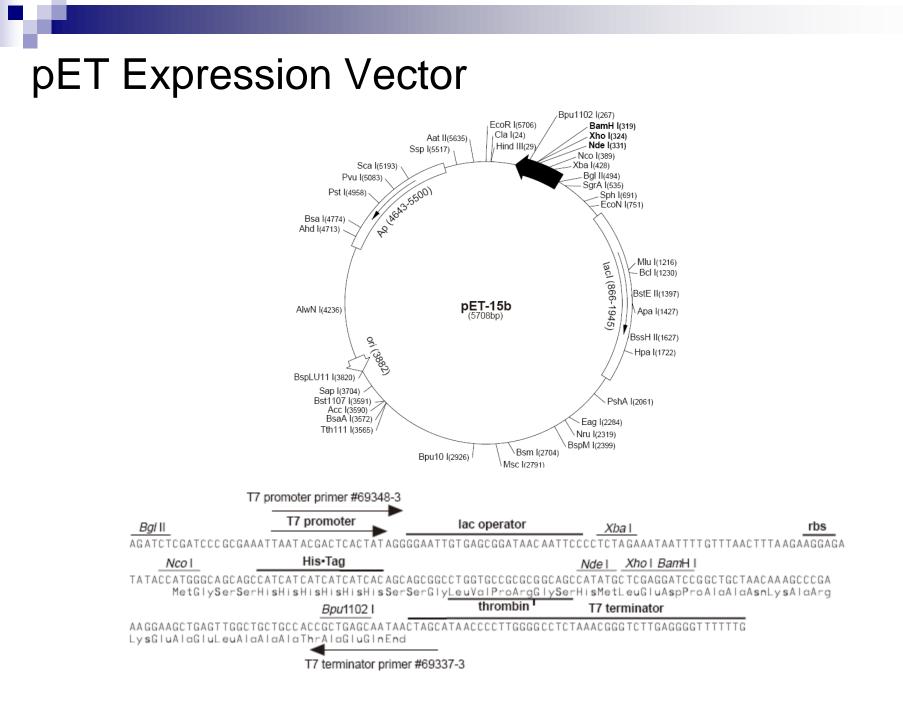
tac, trc promoter

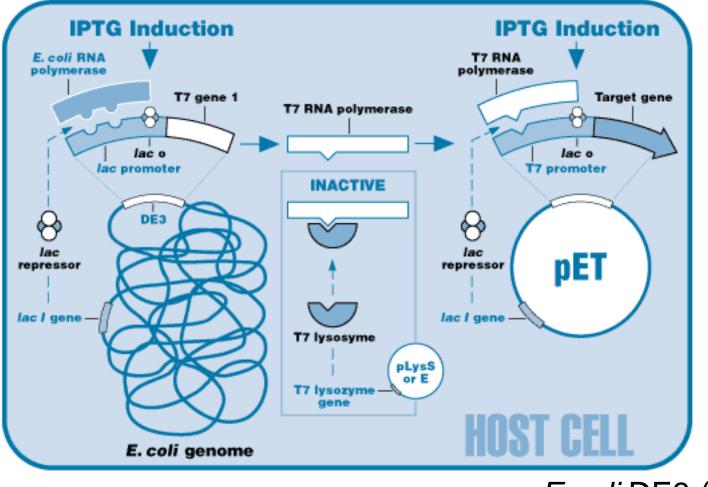

-35 trp promoter --- 16 (tac) or 17 (trc) bp --- -10 lac promoter

IPTG inducible

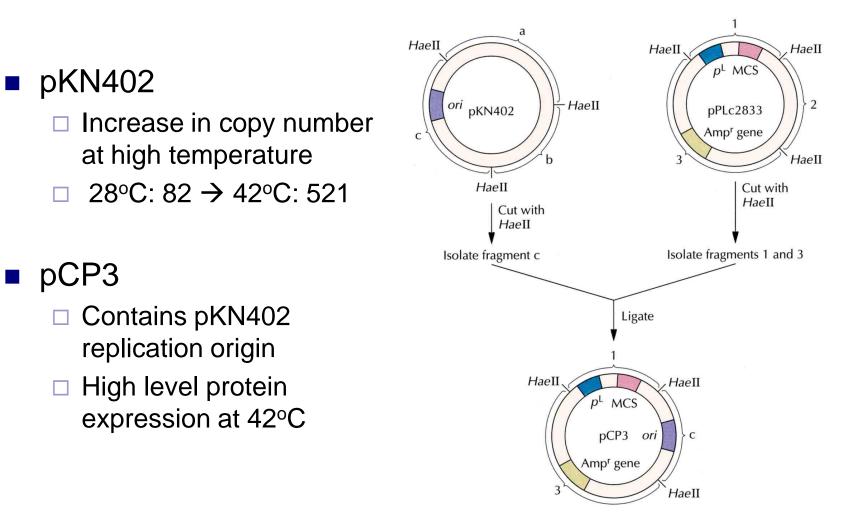
□ Stronger and more effective than the original promoters


Bacteriophage λP^{L} Promoter


- Repressor : cl
 cl857: temperaturesensitive cl
 - Active at low temperature (28~30°C)
 - Inactive at high temperature (42°C)

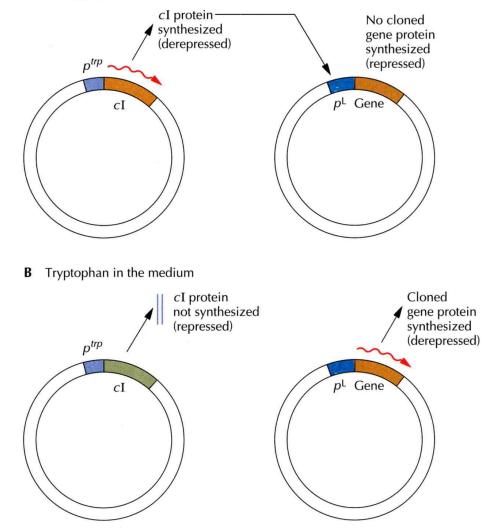

T7 Promoter

- T7 promoter
 Transcription by T7
 - polymerase
- T7 polymerase under the control of the *lac* promoter
 - Induction of T7 promoterregulated genes by IPTG



PET Expression System

E.coli DE3 (pLysS)


Temperature-Dependent Regulation of Plasmid Copy number

Dual Plasmid System

- Two plasmids
 - cl under the control of *trp* promoter
 - Protein expression under the control of p^L promoter
- Control gene expression
 - Without Trp
 - Repression of protein expression
 - With Trp
 - Induction of protein expression
- Inexpensive system for large scale protein production

A No tryptophan in the medium

Expression in Other Microorganisms

- Universal gram (-) bacterial expression vector
 Tn5 promoter in a broad-host-range plasmid pRK290
 Efficient gene expression in different bacterial hosts
 Modification of promoter strength
 - Lactococcus lactis constitutive promoter
 - Screening strong promoters from spacer region (between -35 and -10) library

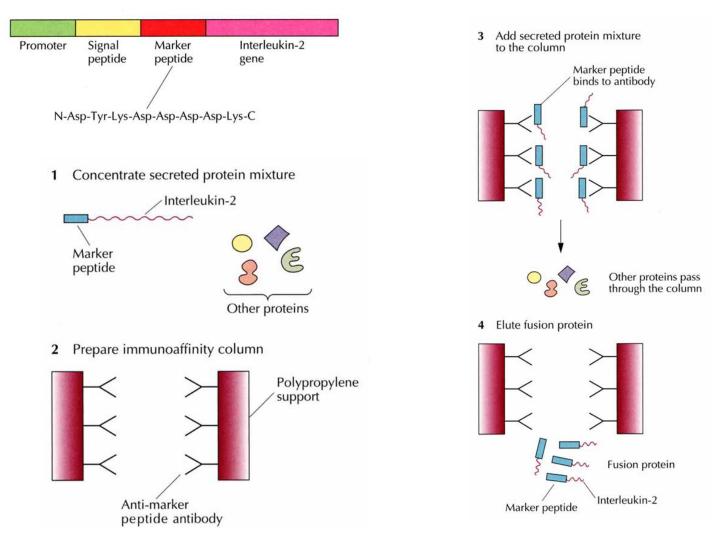
TTGACANNNNNNNNNNNNTGR<u>TATAAT</u>

6.2. Fusion Proteins

Fusion Proteins

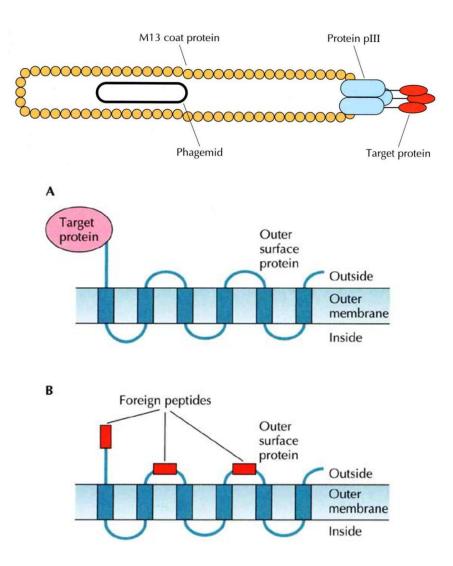
Fusion protein

- In frame fusion of a target protein with a stable host protein
- Resistance to proteolysis


Cleavage of fusion proteins

- Linkage of two proteins with nonbacterial protease recognition sequence
- □ Ile-Glu-Gly-Arg : C-terminal end cleavage by factor X_a

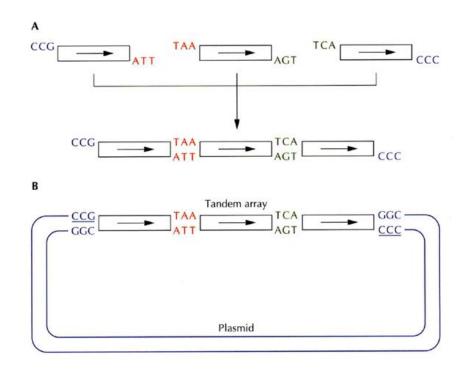
Uses of Fusion Proteins


- Raising antibody
- Simplifying purification
 - □ His tail (6-10 aa): Ni²⁺ binding, elution by imidazole
 - □ Strep-tag (10 aa):Streptavidin binding, elution by iminobiotin
 - □ MBP (40 kDa): Amylose binding, elution by maltose
 - □ GST (25 kDa): Glutathione binding, elution by reducing agent
 - □ Flag (8 aa): Flag Ab binding, elution by low calcium
 - □ ZZ (14 kDa): IgG binding, elution by low pH

Purification of Fusion Proteins by Immunoaffinity Chromatographic Purification

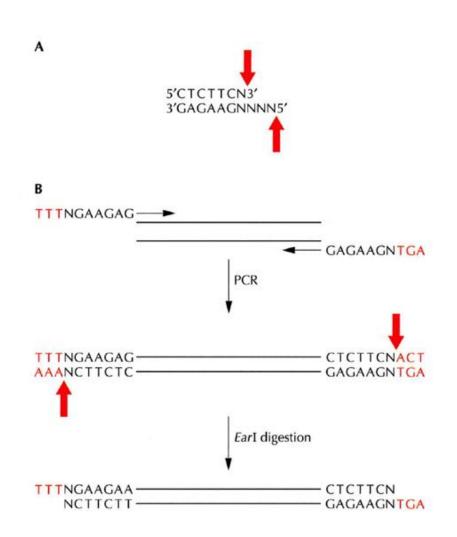
Surface Display

- Display proteins as fusion proteins with a surface proteins (filament, pilus protein)
 - □ Phage display
 - Protein pIII of M13 phage
 - Bacterial display
 - *E. coli* OmpA, OmpF : outer membrane protein
 - *E. coli* PAL: peptidoglycanassociated lipoprotein
 - Target protein in N or C terminus, or in the middle


Usage of Surface Display

- Screening of cDNA libraries
- Overexpression of peptides or proteins
 - Expression of antigenic determinant of the parasite Plasmodium falciparum (causing malaria) by inserting into surface-exposed loops of the major outer membrane protein from P. aeruginosa (OprF)
 - Possible usage as vacccines

Unidirectional Tandem Gene Array

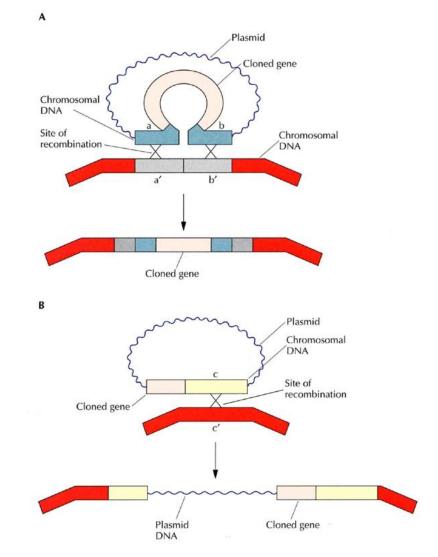

Protein expression levels

- Multiple copies of genes in a low-copy-number plasmids > Single copy of gene in a high-copynumber plasmid
- Generation of tandem gene array
 - Using complementary 3-nucleotide extensions

Unidirectional Tandem Gene Array

- TypeIIS restriction enzyme
 - Cut random sequence outside of the recognition site
- Use pfu polymerase for PCR

6.3. Translation Expression Vectors


Translation Expression Vectors G G - CU — A - U U - GA Translation efficiency A -- U A - UA - U□ Ribosome binding site G A G - UG - UUAAGGAGG G - U5' GAACCG GAACAC 3' Precise distance from the starting codon No secondary structure formation preventing ribosome binding Codon usage Rarely used codons in *E. coli* (AGG, AGA, AUA, CUC, CGA) Solutions Expression in eukaryotes

- Change codons
- Provide tRNAs for rare codons
 - Strain is commercially available

6.4. DNA Integration into the Host Chromosome

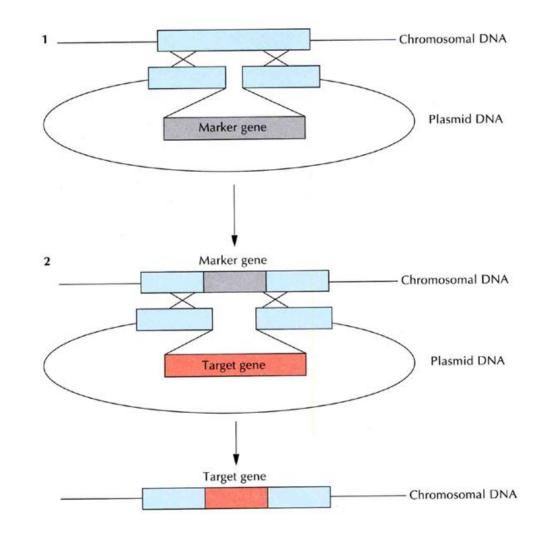
DNA Integration into the Host Chromosome

- DNA integration into chromosome
 - □ Stable expression
 - Integration into nonessential gene
 - Homologous recombination through chromosomal sequence
 - Double cross over or
 - Single cross over
 - Use nonreplicating plasmid for integration

Multiple Integration

Expression of α -amylase in *B. subtilis*

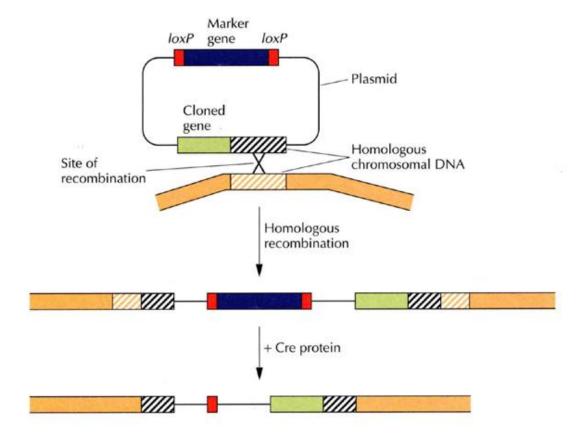
- Integration of plasmid with α-amylase gene and chloramphenicol resistance marker on *B. subtilis* chromosome
- Isolation of clones with multiple integration by selection under high chloramphenicol


Copies/genome

 α -amylase activity (U/ml)

2	500
5	2,300
7	3,100
9	4,400
Multicopy plasmid	700

Multiple integration at specific sites


- Integration of a marker
- Replacement of the marker with a target gene

Removing Selectable Marker Genes

Cre-LoxP system

- Cre recombinase
- LoxP site: 34-bp recombination sites
- Removal of a marker flanked by loxP site by expression of Cre enzyme (under the control of lac promoter)

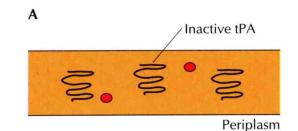
6.5. Protein Stability, Folding, and Secretion

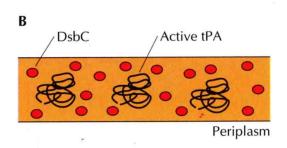
Increasing Protein Stability

Protein half life

□ A few minutes to hours

Factors affecting protein stability

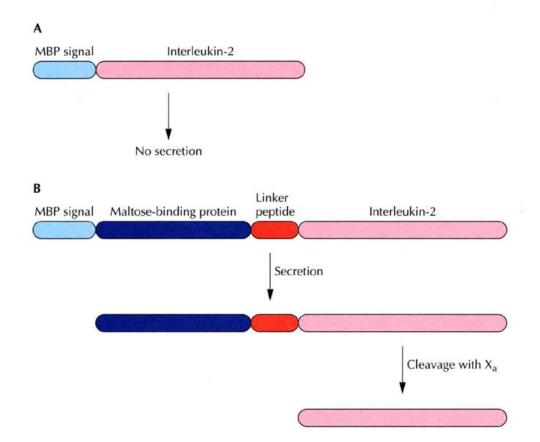

N terminal amino acid


- M, S, A, T, V, G at N terminus of β-galactosidase: > 20 h
- R: ~ 2 min
- Internal PEST sequence
 - Facilitate degradation

Protein Folding

Inclusion body

- Insoluble aggregates of expressed protein
- Strategies to prevent inclusion body formation
 - Tagging with other proteins
 - Thioredoxin, GST
 - Proteins with multiple disulfide bonds
 - Expression with signal peptide for secretion into periplasmic space
 - Coexpression of high levels of periplasmic DsbC enzyme involved in disulfide bond formation



tPA: tissue plasmogen : 17 S-S bonds

Increasing Secretion

- Advantages of secretion of a target protein
 - Protein stability
 - Proinsulin: more stable in periplasm
 - Easy to purify
- Protein secretion
 - Addition of signal peptide
 - Fusion with a secretory protein

Permeabilization of *E. coli*

- Inducible expression of bacteriocin release protein
 - □ Activation of phospholipaseA
 - Permeabilization of inner and outer membrane
- Translational overload
 - □ Inhibition of protein secretion
 - Expression of limiting components protein secretion pathway

Bacteria with Increased Permeability

L-form bacteria

- Bacterial lacking cell wall
- □ Generation of L-form bacteria
 - Spontaneous mutations
 - Treatment with penicillin
 - $\hfill\square$ Inhibition of the final step in cell wall biosynthesis
 - Treatment with lysozyme
 - □ Hydrolysis of saccharide linkage
- □ High yield of protein secretion
- Spheroplasts, protoplasts
 Complete loss of cell wall

6.6. Production of Recombinant Proteins

Overcoming Oxygen Limitation

Oxygen limitation

- Slow growth
- Enter stationary phase
- Protease production
- Use of protease-deficient host strains
 - Proteases are also required for cell growth
 - rpoH (heat shock sigma factor) and degP (protease for high temperature growth) mutants
 - Decrease in protein degradation of secretory proteins
- Bacterial hemoglobin
 - □ Hemoglobin-like molecule in Vitreoscilla bacterium
 - Expression in *E. coli* to increase protein synthesis

Metabolic Load

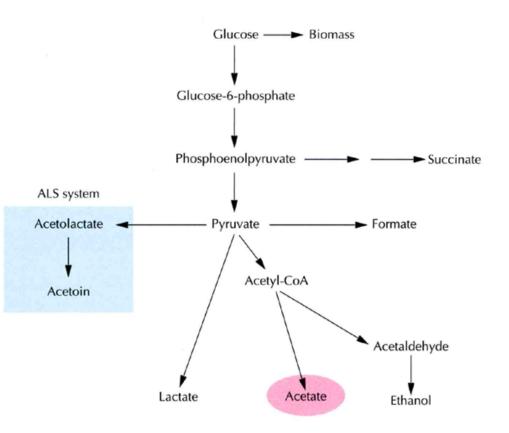
- Impairment of normal cellular function of host cells by expression of foreign DNA
 - Replication and maintenance of high copy number plasmid
 - □ Limitation of dissolved oxygen
 - Depletion of certain aminoacyl-tRNAs and/or drain energy
 - Prevent proper localization of host proteins by foreign secretory proteins
 - □ Interference of host cell function by foreign proteins

Effects of a Metabolic Load

Decrease in cell growth rate

Loss of plasmid or a portion of plasmid DNA

- Decrease in energy-intensive metabolic processes
 - Nitrogen fixation
 - Protein synthesis
- Changes in cell size and shape
- Increase in extracellular polysaccharide production
- Increase in translational errors


Prevention of Metabolic Load

Prevention of metabolic load

- □ Low copy number plasmid for expression
- □ Integration of DNA into host chromosome
- Inducible promoter
- Optimization for the maximum yield
 - Protein expression levels
 - □ Cell density

Increasing Cell Density

- Elimination of growth inhibitory waste products
 - e.g. prevention of acetate formation
 - Use glucose analogue αglucoside to reduce glucose uptake
 - Use ptsG (enzyme II in the glucose phosphotransferase system) mutant
 - Expression of acetolatase synthase

