Polydiacetylene Liposomes

States between crystalline and isotropic liquid

form-anisotropic molecules

1888: Prof. Réinitzer, botanist

A schematic representation of the melting of crystalline cholesteryl benzoate (1) at 145.5 °C to form a chiral nematic (cholesteric) phase, which in turn forms the isotropic liquid on further heating to 178.5 °C.^{30,31}

phase transitions: 1922 G. Friedel

Schematic representation of the structures of a solid, a smectic phase the nematic phase and the isotropic liquid state formed by calamitic organic molecules with a large length-to-breadth ratio.

nematic phase

-> long-range orientational order

-> no positional order

-> center of mass positions are randomly distributed as in a liquid

-> most nematics are uniaxial (approximated as cylinders)

-> can be aligned by an external magnetic / electric field

smectic phase

-> form well-defined layers

A

-> Smectic A: molecules oriented along the layer normal

-> Smectic C: molecules tilted away from the layer normal

-> liquid-like within the layers

-> many different smectic phases

chiral nematic (cholesteric) phase

chiral nematic:

-> twisting of the molecules perpendicular to the director

-> finite twist angle due to asymmetric packing

chiral smectic C*:-> positional ordering in a layered structure

-> molecules tilted by a finite angle with respect to the layer normal

-> chirality induces azimuthal twist from one layer to the next, producing spiral twisting of molecular axis along the layer normal

chiral nematic phase: chrial pitch p

-> distance over which the LC molecules undergo a full 360° twist

-> pitch, p, typically changes when temperature is altered or when other molecules are added to the LC host

-> if pitch is of the same order as the wavelength of visible light, causes systems to exhibit unique optical properties, such as selective reflection

temperature sensor

order parameter S

-> generally decreases as the temperature is raised

S=0, isotropic

S=1, Ordered

Nematic, S=0.5-0.6

smectic LCs

Smectic A

Â M

Smectic C

00000000000 00000000000 000000000000

A type: molecular alignment perpendicular to the surface of the layer, but lack of order within the layer.

C type: having a tilted angle between molecular alignment and the surface of the layer.

B type: molecular alignment perpendicular to the surface of the layer, having order within the layer.

Molecular array in an s_B phase. The molecules are perpendicular to the layer's plane, each at the centre of a hexagonal system, and are free to rotate around their longitudinal axis. 4-Pentylbenzylidene-4'-hexylaniline is such an example

banana shaped LCs

11

10

9

-> Coronene

->

Differential Scanning Calorimety

alkylcyanobiphenyl homologues

Table 3.1. Transition temperatures for alkylcyanobiphenyl homologues.

Compound		Transition Temperatures (°C)			
No.	R	C	SA	N	I
9a	CH ₃	• 109.0		[• 45.0]	•
9b	C ₂ H ₅	• 75.0		[• 22.0]	•
9c	C ₃ H ₇	• 66.0	—	(• 25.5)	•
9d	C4H9	• 48.0		(• 16.5)	•
9e	C5H11	• 24.0		• 35.0	•
9f	C6H13	• 14.5		• 29.0	•
9g	C7H15	• 30.0	_	• 43.0	•
9h	C ₈ H ₁₇	• 21.5	• 33.5	• 40.5	•
9i	C9H19	• 42.0	 48.0 	• 49.5	•
9j	$C_{10}H_{21}$	• 44.0	• 50.5		•

* first nematics commercially available for display devices

* still used in LC displays for watches, calculators, etc.

alkylcyanobiphenyl variants

alkylbiphenyl variants

changes of the core results in dramatic changes for the LC in compound 34: incompatibility of two distinct different core regions!

linker variations

* some linking groups are easily synthesized!

- * much higher nematic phase stability
- * but melting points are also higher

linker variations

		C5 H1 1 O-O-X-	(45)	
		x	C-N(°C)	N-I(°C)
(a)		-N=N- 0	93*	142.6
(b)		-N=N-	92	139
(c)		-CH=CH-	97	126
(d)		-000-	87	96
(e)		-C≣C-	78	94
(f)		-CH=N-	62	93
(g)		Single bond	53	67.5
	•	a smectic A phase	e also occurs	up to 107.2°C

* some linking groups are easily synthesized!

* much higher nematic phase stability

* but melting points are also higher

finding the "right mix"

* longer terminal chains stabilize a lamellar arrangement
* resulting smectic phase is titled because of the arrangement of the lateral dipolar units

lateral substituents

сыны - Сении

X	C-N(°C)	S-N(°C)	N-I(°C)
н	50.0	196.0	-
F	61.0	79.2	142.8
C1	46.1	-	96.1
Me	55.5	-	86.5
Br	40.5	-	80.8
CN	62.8	43.1	79.5
NO2	51.2	-	57.0

lateral substituents

88, a = H, b = H; C 194.5 $S_B 211.0 S_A 221.5 I$ 89, a = F, b = H; C 69.0 G 83.0 B 100.5 $S_C 124.0 S_A 158.0 N 161.0 I$ 90, a = H, b = F; C 47.0 (J 40.0) $S_I 53.5 S_C 116.5 S_A 130.0 N 155.0 I$ 91, a = F, b = F; C 48.5 $S_C 95.0 N 141.5 I$

doesn't work always:

terminal groups

 C_{SH1} , $-\langle \rangle + \langle 0 \rangle + \infty + \langle 0 \rangle + x$

х	C-N(°C)	Sa-N(°C)	N-I(°C)
н	87.5	-	114
F	92	-	156
C1	104	-	191
Br	115.5	-	193
I	126.5	126	186
COCH3	127	-	209
CN	111	-	226
NH2	160	-	200.5
NMe ₂	162	-	212
NO2	99.2	-	201
NCS	118	129	235
OCH3	122	-	212
CH3	106	-	176
CeHs	155	142	266
OCOCH3	116	105	234

structural template for discotics

benzene based compounds

Table 7.3. Benzene based compounds; (a) hexaalkanoyloxy benzenes, (b) hexa (alkoxyphenyl) benzenes.

