

Lithographic methods

- Classical manufacture of integrated circuits
 - shine visible light through mask onto radiation-sensitive "photoresist"
 - positive: where exposed → soluble (polymer degrades)
 - e.g. PMMA (poly(methyl methacrylate))
 - negative: where exposed → insoluble (monomer polymerizes)
 e.g. novolac (phenol formaldehide) resin

7

- But resolution limited to wavelength of light (ca. 0.5 μm) by diffraction effects
- \rightarrow use shorter wavelengths

Wavelengths (nm)	optics
350 - 250	fused silica, quartz
250 - 150	CaF ₂ (hygroscopic – become cloudy)
100 nm	11/
no window transmits	UV

Ion beam lithography

- e.g. ions of liquid metals (e.g. gallium)
- focused ion beam can write metal nanowires directly (no need for masks and photoresists)
- can be used to write and repair masks
- e.g. 150 keV H-ions → resolution 0.1 μm
- · advantage over electrons:
 - ions are scattered less
 - electrons cannot write directly

Electron beam lithography

14

- used in a number of research labs
- used commercially for making masks
- wavelength typically 10 pm (= 0.01 nm = 0.1 A)
- resolution down to 5 nm
- can be focused using electrostatic lenses (electron microscope technology)
- beam travel programmable
- not practical for production too slow

13

