- Ship Stability -Ch.7 Longitudinal Righting Moment

2009

Prof. Kyu-Yeul Lee

Department of Naval Architecture and Ocean Engineering, Seoul National University

Sec.1 Longitudinal Righting Moment

Sec.2 Calculation of BM_L,GZ_L in Wall Sided Ship Sec.3 Transverse Righting Moment due to Movement of Cargo

Sec.4 Moment to Change 1cm Trim(MTC), Trim

2009 Fall, Ship Stability - Longitudinal Righting Moment

/38

Longitudinal Righting Moment(5)

Longitudinal Righting Moment (6)

Sec.1 Longitudinal Righting Moment

Sec.2 Calculation of BM_L,GZ_L in Wall Sided Ship

Sec.3 Transverse Righting Moment due to Movement of Cargo

Sec.4 Moment to Change 1cm Trim(MTC), Trim

 ∇ : Displacement volume

Calculation of BM_L, GZ_L (3) - BM_L(Longitudinal Metacentric Radius)

(R.H.S) $\frac{1}{\nabla} v \cdot (-x_{v,a} + x_{v,f})$ $x_{v,a}$: x coordinate of center of changed displacement volume in aft $x_{v,f}$: x coordinate of center of changed displacement volume in forward Represent center of buoyancy with respect to waterplane fixed frame $(x_{v,c}, z_{v,c})$ as one with respect to body fixed frame.

$$\begin{pmatrix} x_{v} \\ z_{v} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x'_{v} \\ z'_{v} \end{pmatrix}$$
$$\implies x_{v,c} = x'_{v,c} \cdot \cos\phi + z'_{v,c} \cdot \sin\phi$$

$$= \frac{1}{\nabla} \quad v \cdot (-x'_{v,a} \cdot \cos \theta - z'_{v,a} \cdot \sin \theta + x'_{v,f} \cdot \cos \theta + z'_{v,f} \cdot \sin \theta)$$

$$= \frac{1}{\nabla} \Big(-v \cdot x'_{v,a} \cos \theta + v \cdot x'_{v,f} \cos \theta \Big)$$

Longitudinal moment of volume about origin F with respect to body fixed frame

 $v \cdot z'_{v,a} \sin \theta + v \cdot z'_{v,f} \cdot \sin \theta$

Seoul National

2009 Fall, Ship Stability - Longitudinal Righting Moment

 ∇ : Displacement volume

Calculation of BM_L, GZ_L (4) - BM_L(Longitudinal Metacentric Radius)

How to calculate 1st moment of volume?

: It can be calculated by integral of 1st moment of area over the the length of ship.

$$M_{v,x'} = v \cdot x'_{v,c} = \iiint x' \, dy' \, dz' \, dx' = \int_{x'_a}^{x'_f} A(x') \, x'_c \, dx'$$
$$M_{v,z'} = v \cdot z'_{v,c} = \iiint z' \, dy' \, dz' \, dx' = \int_{x'_a}^{x'_f} A(x') \, z'_c \, dx'$$

$$= \frac{1}{\nabla} \left(-\cos\theta \int_{x_a'}^F A_a(x') x_c' dx' - \cos\theta \int_F^{x_f'} A_f(x') x_c' dx' + \sin\theta \int_{x_a'}^F A_a(x') z_c' dx' + \sin\theta \int_F^{x_f'} A_f(x') z_c' dx' \right)$$
$$= -\frac{1}{\nabla} \left(\int_{x_a'}^F A_a(x') \left(x_c' \cos\theta + z_c' \sin\theta \right) dx' + \int_F^{x_f'} A_f(x') \left(x_c' \cos\theta + z_c' \sin\theta_c \right) dx' \right)$$

2009 Fall, Ship Stability - Longitudinal Righting Moment

 $=\frac{1}{2}x'\tan\theta$

/38

 ∇ : Displacement volume

Calculation of BM_L , GZ_L (5) BM_L(Longitudinal Metacentric Radius)

 ∇ : Displacement volume

Seoul National OD SDAL Advanced Ship Design Automation Lab. 15 /38

Calculation of BM_L, GZ_L (6) - BM_L (Longitudinal Metacentric Radius)

 ∇ : Displacement volume

Calculation of BM_L, GZ_L (7) - BM_I (Longitudinal Metacentric Radius)

2009 Fall, Ship Stability - Longitudinal Righting Moment

Secul 16 National OD SDAL 16 Jaku Advanced Ship Design Automation Lab. /38

$$GZ_{L} = KN_{L} - KG\sin\theta$$
$$= KM_{L}\sin\theta - KG\sin\theta$$

$$= (KB + BM_{L0})\sin\theta - KG\sin\theta$$
$$\downarrow \left(BM_{L0} = \frac{I_L}{\nabla} (1 + \frac{1}{2}\tan^2\theta) \right)$$
$$= (KB + \frac{I_L}{\nabla} (1 + \frac{1}{2}\tan^2\theta))\sin\theta - KG\sin\theta - KG\sin\theta$$

$$\Rightarrow = (KB + \frac{I_L}{\nabla}(1 + \frac{1}{2}\tan^2\theta))\sin\theta - KG\sin\theta$$
$$= (KB + \frac{I_L}{\nabla} - KG)\sin\theta + \frac{1}{2}\frac{I_L}{\nabla}\tan^2\theta\sin\theta$$
$$\downarrow (BM_L = \frac{I_L}{\nabla})$$

$$= (KB + BM_{L} - KG)\sin\theta + \frac{1}{2}BM_{L}\tan^{2}\theta\sin\theta$$
$$= GM_{L}\sin\theta + \frac{1}{2}BM_{L}\tan^{2}\theta\sin\theta$$

Advanced Ship Design Automation Lab. http://asdal.snu.ac.kr 18 /38

Seoul National

Univ

2009 Fall, Ship Stability - Longitudinal Righting Moment

Sec.1 Longitudinal Righting Moment Sec.2 Calculation of BML, GZL in Wall Sided Ship

Sec.3 Transverse Righting Moment due to Movement of Cargo

Sec.4 Moment to Change 1cm Trim(MTC), Trim

Sec.1 Longitudinal Righting Moment Sec.2 Calculation of BM₁,GZ₁ in Wall Sided Ship Sec.3 Transverse Righting Moment due to Movement of Cargo

Sec.4 Moment to Change 1cm Trim(MTC), Trim

Trim: d_a - d_f (Positive : Trim by stern, Negative : Trim by bow) \checkmark

- Calculation of Trim using MTC
 - MTC : moment to change trim one centimeter over the LBP

Examples

Problem> Calculation of Trim of Barge

Question

A barge 100 m long, 12 m beam and 10 m deep is floating on an even keel at 6 m draft. Vertical center of mass of the ship is 7 m from the baseline.

A cargo of 1,000 ton is loaded in the location 20 m forward from centerline, 4 m upward from the baseline.

Find the draft forward and aft.

Problem> Calculation of Draft at Bow and Stern caused by Movement of Cargo

Question)

A barge is floating in fresh water at draft 2m. The length, breadth, depth of the barge are 20m, 12m, 4m. A cargo on the deck is shifted through a distance of 4 m to forward and a distance 2 m to starboard.

Calculate port and starboard draft in FP and AP. KG of barge is 2 m.

Advanced Ship Design Automation Lab.

28 /38

Seoul National

Problem> Calculation of Trim and Trim Angle of Barge(1)

Question)

There is a ship of density ρ_m =1.0 ton/m³ and length, breadth, depth of the ship are 28m, 18m, 9m. Answer questions about the barge.

② Following cargos are supposed to be loaded in the barge.

Carros	Unit Weight	No. of Cargo	Loading location(cm)				
Cargo			Х	у	Z		
Cargo 1	100 ton	3	0	0	1		
Cargo 2	150 ton	2	-5	0	1		

Find a deadweight(DWT) b TPC c MTC d Trim e draft forward and aft f LCB g LCG

> Seoul National

2009 Fall, Ship Stability

01X16.6

Problem> Calculation of Trim and Trim Angle of Barge(2)

Question)

There is a ship of density ρ_m =1.0 ton/m³ and length, breadth, depth of the ship are 28m, 18m, 9m. Answer questions about the barge.

3 When the cargo 2 is removed from the result of problem (2), calculate LCB, LCG after removing.

④ When the cargo 1 are shifted to the right (along the y axis) through a distance of 5 m from the result of problem ③, calculate an angle of heel of the barge.

Seoul National

2009 Fall, Ship Stability

- Longitudinal Righting Moment

Advanced Ship Design Automation

/38

Problem> Calculation of Trim Forward and Aft

Question)

A bulk carrier of 150,000 ton deadweight, 264 m LBP is floating on an even keel at 16.9 m draft, and cargo holds are full of cargo.

When cargo in No.1 cargo hold is discharged on port, calculate drafts forward and aft. The transverse center of mass of cargo is in centerline, and longitudinal center of mass of cargo is 107.827 m from midship.

Find draft forward and aft by using hydrostatic table of this ship.

(첨부 자료) *DWT* 150,000 ton Bulk Carrier, *Lbp* = 264 m

HYDROSTATIC TABLE ====================================										
DRAFT (EXT.) (M)	DISPL EXT. (MT)	TPC (MT/CM)	MTC (MT*M/CM)	L.C.B (M)	L.C.F (M)	<u>кмт</u> (м)	<u>Cb</u>	WETSUR (M^2)		
15,200 15,220 15,240 15,260 15,260 15,300 15,300 15,320 15,340 15,360 15,360 15,400 15,420 15,420 15,440 15,440 15,460 15,500 15,520 15,560 15,560	150450 150667 150883 151100 151316 151326 151749 152615 152832 152049 153265 153482 153369 153316 154133 154330	105.4 105.5 105.5 105.5 105.5 105.6 105.6 105.6 105.6 105.6 105.6 105.7 105.7 105.7 105.7 105.7 105.7 105.8 105.8	1906.1 1907.1 1908.1 1909.0 1910.0 1911.0 1911.9 1912.9 1913.9 1914.8 1915.8 1916.7 1917.7 1918.6 1919.6 1920.5 1921.5 1922.4 1922.4	9,464 9,454 9,452 9,422 9,421 9,422 9,421 9,422 9,421 9,422 9,389 9,379 9,368 9,357 9,347 9,325 9,325 9,314 9,325 9,314 9,325 9,314 9,293 2,232 9,221	2.107 2.081 2.055 2.029 2.004 1.978 1.953 1.903 1.878 1.854 1.854 1.854 1.757 1.733 1.757 1.733 1.685 1.662	18,717 18,714 18,702 18,706 18,706 18,704 18,696 18,696 18,694 18,686 18,684 18,682 18,675 18,675 18,675 18,673	0.8128 0.8129 0.8130 0.8132 0.8132 0.8134 0.8134 0.8136 0.8136 0.8137 0.8138 0.8139 0.8140 0.8141 0.8142 0.8143 0.8145 0.8145	17013 17023 17019 17032 17062 17065 17078 17074 17093 17128 17123 17123 17123 17153 17180 17190 17217 17234 17210		

ļ	DRAFT (FXT)!	DISPL	TPC	MTC	L.C.B	L.C.F	KMT	Сь	WETSUR
	(M)	(MT)	(MT/CM)	(MT≭M/CM)	(M)	(M)	(M)		(M^2)
	16.600 16.620 16.640 16.660 16.680 16.700 16.720 16.740 16.740 16.760	165679 165898 166116 166335 166554 166773 166991 167210 167429	106.7 106.7 106.7 106.7 106.7 106.7 106.7 106.8 106.8	1968.5 1969.3 1970.1 1970.9 1971.6 1972.4 1973.2 1974.0 1974.7	8.709 8.698 8.687 8.676 8.665 8.655 8.644 8.633 8.622	0.589 0.570 0.552 0.534 0.516 0.498 0.480 0.480 0.462 0.444	18.598 18.597 18.597 18.596 18.595 18.595 18.595 18.594 18.594 18.593	0.8196 0.8197 0.8197 0.8198 0.8200 0.8201 0.8202 0.8202 0.8203 0.8204 0.8204	17711 17722 17733 17744 17756 17767 17767 17777 17788 17799
	16, 780 16, 800 16, 820 16, 840 16, 860 16, 880 16, 900 16, 920 16, 960 16, 980	167867 168086 168305 168524 168743 168962 169181 169400 169619 169839	106.8 106.8 106.8 106.8 106.9 106.9 106.9 106.9 106.9 106.9	1975.5 1976.2 1977.0 1977.7 1978.4 1979.1 1980.1 1980.9 1981.7 1982.6 1983.4	8.601 8.590 8.579 8.568 8.558 8.547 8.536 8.525 8.514 8.504	0.428 0.408 0.390 0.372 0.354 0.336 0.324 0.308 0.292 0.276 0.261	18.592 18.591 18.591 18.590 18.590 18.590 18.590 18.590 18.589 18.589 18.589	0.8205 0.8206 0.8207 0.8208 0.8209 0.8209 0.8209 0.8210 0.8211 0.8212 0.8213 0.8214	17810 17821 17831 17841 17851 17861 17871 17881 17891 17901 17911

NOTE : POSITIVE SIGN(+) OF L.C.B & L.C.F MEANS FORWARD DIRECTION OF MIDSHIP. DISPLACEMENT(EXT) IS BASED ON SEA WATER S.G OF 1.025.

2009 Fall, Ship Stability

예제6.7

Problem> Calculation of Trim of Barge

Question)

There is a ship operating in fresh water as shown in the picture. Answer following questions.

Densities of aft-body, cargo hold, fore-body are $\rho_m{=}~1.0~ton/m3.$

- ① Calculate the displacement of this ship.
- 2 Find LCF, LCB, LCG, KG of the ship.
- ③ When the cargo of 0.6 ton/m³ density is loaded homogenously in each cargo hold (Total 10 holds : No.1 ~ No.5 Hold x (port & starboard)). Calculate the deadweight(DWT) and lightweight(LWT) of the ship.
- ④ In real ship, Loading/unloading cargo cause shape of waterplane to be changed. In that case, explain the procedure of calculating change of trim.

32 /38

Problem> Calculation of Position of Barge

Question

A rectangular barge is floating on an even keel at a draft of 3 m. The center of mass is changed to 2 m from the baseline, 6 m from aft, then calculate the position of the barge.

2009 Fall, Ship Stability - Calculation of Righting Force And Stability

- Ship Stability -

Ch.8 Heeling Moment caused by Fluid in Tanks (Free Surface Moment)

2009

Prof. Kyu-Yeul Lee

Department of Naval Architecture and Ocean Engineering, Seoul National University

2009 Fall, Ship Stability

Advanced Ship Design Automation Lab. http://asdal.snu.ac.kr

Heeling Moment caused by Fluid in Tanks (1) - Case1 : Solid Cargo fixed to Cargo Hold

35 /38

Heeling Moment caused by Fluid in Tanks (2) - Case2 : Fluid Cargo in Cargo Hold (1)

cf) In case that fixed cargo of solid is loaded

Righting
arm
$$\mathbf{GZ} = \mathbf{KN} - \mathbf{KG} \sin \phi$$

 $= \mathbf{GM} \sin \phi$

Heeling Moment caused by Fluid in Tanks (3) - Case2 : Fluid Cargo in Cargo Hold (2)

 B_1

y'

▲ Z.

 $\mathbf{b}M$

 G_0^{+}

x, x'

00

('

m

B

b

 K^{T}

ф

(It's not relevant to weight of fluid in tank) ³⁷

 i_T : 2nd moment of fluid plane area in tank about x' axis

m : Metacenter of cargohold

w: Weight of fluid in tank

W: Total weight

G: Center of total mass

B: Center of buoyancy

 G_1 : Changed center of total mass

*B*₁: Changed center of buoyancy

 g_1 : Changed center of fluid in tank

b : Center of the wedge $w_1 s w_2$

 b_1 : Center of the wedge $l_1 s l_2$ g: Center of fluid in tank

 ρ_F : Density of fluid in tank

 $\rho_{\rm SW}$: Density of sea water

 ∇ : Displacement volume

v : Volume of fluid in tank

loment caused by Fluid in tanks

Problem> Free Surface Effect

Question

Sea water is filled partially in tank with waterplane of rectangular shape. If longitudinal bulkhead is installed in center of tank, how much GM will be changed?

38 /38