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Shear Forces and Bending Moments
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• Shear Forces and Bending Moments
• Relationships Between Loads, Shear Forces and Bending 

MomentsMoments
• Shear-Force and Bending-Moment Diagrams
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Shear-Force and Bending-Moment Diagrams
Concentrated LoadConcentrated Load

• Shear Force Diagram,
(0 )PbV x a  (0 )V x a

L
  

(0 )PaV x a  

B di  M t Di

(0 )V x a
L

 
Slope dV/dx =0  
 q=0
Area for x < a 

• Bending Moment Diagram

( )PbxM a x L  

 increase in M
Area for a<x<b 
 decrease in M( )M a x L

L
  

( ) ( )PaM L L 

 decrease in M

( ) ( )M L x a x L
L

   
Slope dM/dx = V



Shear-Force and Bending-Moment Diagrams
Uniform LoadUniform Load

• From Moment Equilibrium,
qLR R 

• From Free Body Diagram,
2A BR R 

2A
qLV R qx qx   

2

2 2 2A
x qLx qxM R x qx     

 

• Slope of V?
• Slope of M?



Shear-Force and Bending-Moment Diagrams
Several Concentrated LoadsSeveral Concentrated Loads

• From Moment Equilibrium,
R R P P P   

• From Free Body Diagram,
1 2 3A BR R P P P   

1(0 )A AV R M R x x a   

1 1 1 1 2( ) ( )A AV R P M R x P x a a x a      1 1 1 1 2( ) ( )A AV R P M R x P x a a x a 

3BV R P  3

3 3 2 3( ) ( ) ( )BM R L x P L b x a x a      

V R

3( ) ( )
B

B

V R
M R L x a x L

   



Saint-Venant Principle
Eff t f t i l t ?Effect of material property?

Point Load Point Load

Case 1
E = 2E5 MPa

Case 2
E = 2 MPa
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Introduction

• Chapter 4  Shear forces (V) & Bending 
Moments (M).

• How about stresses and strains associated 
with V & M?with V & M?

• Assumption:
– Beams are symmetric about the xy plane.
– y-axis is an axis of symmetry of the cross y axis is an axis of symmetry of the cross 

section
– All loads act in this same plane  known as the All loads act in this same plane, known as the 

plane of bending



Pure Bending and Nonuniform Bending

• Pure Bending: 
– Flexure of a beam under a constant bending moment.Flexure of a beam under a constant bending moment.
– Occurs only in regions with zero shear force

• Nonuniform bending
– Flexure in the presence of shear forcesp
– Bending moment changes

Si l  b  AB l d d b   l  • Simple beam AB loaded by two couples 
M1

– Constant bending moment & shear force 0



Pure Bending and Nonuniform Bending
Oth  lOther examples

Pure 
bending

nonuniform
bending

nonuniform
bending



Curvature of a Beam
d fi itidefinition

• Strains and stresses due to lateral load 
are directly related to the curvature of 
deflection curve.

– Two points m1 & m2 on the deflection p 1 2
curve

– Center of curvature
Center of curvature

R di  f 
– Radius of curvature

곡률 曲率

Radius of curvature

• Curvature (κ,곡률, 曲率): reciprocal of 
the radius of curvature

1– Measure of how sharply a beam is bent 1






Curvature of a Beam

• From the geometry of triangle O’m1m2,
d ds  

• By rearranging,
Center of curvature

R di  f 

1 d
ds



 

• Under the assumption of small 

Radius of curvature

p
deflections  deflection curve is nearly 
flat

1 d
dx



 



Curvature of a Beam
i  tisign convention

• Sign convention of curvature
– (+) : beam is bent concave upward (위로오목)( ) : beam is bent concave upward (위로오목)
– (-): beam is bent concave downward (아래로오목)



Longitudinal Strains in Beams

• Basic assumption:
– Cross section of a beam in Cross section of a beam in 

pure bending remain plane
– (There can be deformation in (There can be deformation in 

the plane itself)

• Upper part: shorten• Upper part: shorten
compression

• Lower part: elongate
tension



Longitudinal Strains in Beams

– Neutral surface: no 
longitudinal strain

– Neutral axis: neutral surface’s 
intersection with cross-
sectional planesectional plane

– At neutral surface:

– Length L1 of line ef after 

dx d 

Length L1 of line ef after 
bending

( ) yL y d dx dx    1 ( )L y d dx dx 


   



Longitudinal Strains in Beams

• Longitudinal strain
y y x y 


   

– Strain-curvature relation
– Longitudinal strain is proportional to the curvature & distance y Longitudinal strain is proportional to the curvature & distance y 

from the neutral surface (regardless of the material)
– Longitudinal stress expected – Longitudinal stress expected 
– Transverse strains due to Poisson’s ratio  does not induce 

transverse stress  why? transverse stress, why? 



Normal Stress in Beams

• From Hooke’s Law,

E
x x

EyE E y  


    

– Stresses are compression above the neutral surface 
with positive curvature

– Still not practical. Why?
– Determine y & relationship between κ (curvature) y p ( )

and M (Bending Moment)



Normal Stress in Beams

• Resultant of the normal stresses
– Resultant force in x direction is zeroResultant force in x direction is zero
– The resultant  moment  is equal to the bending 

moment  Mmoment  M



Normal Stress in Beams
L ti  f N t l A iLocation of Neutral Axis

• Because there is no resultant force acting on the 
cross section

0x
A A

dA E ydA    


– First moment of the area of the cross section evaluated 

0
A

ydA 

with respect to z-axis is zero.  z-axis must pass 
through the centroid.

– Y axis is also axis of symmetry 

• The origin O of coordinates is located at the The origin O of coordinates is located at the 
centroid of the cross sectional area



Normal Stress in Beams
M t C t  R l ti hiMoment-Curvature Relationship

• Elemental moment
xdM ydA 

2 2

A A

M Ey dA E y dA   



M t C t  E ti

M EI
2

A

I y dA 

• Moment-Curvature Equation
1 M

EI



 

EI Flexural rigidity: a measure of the 
resistance of a beam to bending



Normal Stress in Beams
Fl  F l  (굽힘공식)Flexure Formula (굽힘공식)

• Finally, bending stress due to bending 
moment is: My

M i  t il  d i  b di  

x
y

I
  

Bending stress

• Maximum tensile and compressive bending 
stresses occur at points located farthest 
f  th  t l ifrom the neutral axis.

1
1

Mc M     2
2

Mc M  1
1I S 2

2I S

I I
1

1

IS
c

 2
2

IS
c





Normal Stress in Beams
Fl  F l  (굽힘공식)Flexure Formula (굽힘공식)

• Section modulus: combines properties into a single quantity.
• Doubly symmetric shapes: when c1 = c2 = c• Doubly symmetric shapes: when c1 = c2 = c
• Maximum tensile and maximum compressive stresses are 

l i llequal numerically
Mc M      1 2 I S

      

– A beam of rectangular cross section
3bh 2bh

12
bhI 

6
bhS 



Example 5-3

• Maximum tensile and compressive stress in the beam due to 
bending?



Design of Beams for Bending Stress

• Factors when designing a beam
– Type of structure (airplane, automobile, bridge, building…)Type of structure (airplane, automobile, bridge, building…)
– Materials to be used

Th  l d  t  b  t d– The loads to be supported
– Environmental conditions
– Cost

• Standpoint of strength• Standpoint of strength
– Shape and size of beam: actual stress < allowable stress



Design of Beams for Bending Stress

• Least cross sectional area  minimize weight & cost
• Required section modulus  mechanical stabilityRequired section modulus  mechanical stability

maxMS 

Section modulus must be at least as large as above

allow

S




– Section modulus must be at least as large as above
– When allowable stress are different for tension & compression 

t  ti  d li d dtwo section moduli needed

• We need to satisfy both ‘least cross sectional area’ & required 
section modulus



Design of Beams for Bending Stress
Relati e Efficienc  of Vario s Beam ShapesRelative Efficiency of Various Beam Shapes

• Efficiency of a beam in bending depends primarily on the 
“shape of the cross section”

– Material needs to be located as far as practical from the neutral 
axis  larger section modulus

• Section modulus of a rectangle of width b and height h;

2

0.167
6 6

I bh AhS Ah
c

   



Design of Beams for Bending Stress
Relati e Efficienc  of Vario s Beam ShapesRelative Efficiency of Various Beam Shapes

• Section moduli of a square cross section (with side h) & solid circular 
cross section of a diameter d with the same area ;

3 3h d 
( / 2)h d 

30.1160
6 48square
h dS d 

  
3

30.0982circle
dS d

 
1.18square

circle

S
S



■ more efficient than ● (with the same area). Why?

Circle has a relatively larger amount of material located near the neutral axis 

32circle

• Circle has a relatively larger amount of material located near the neutral axis 
does not contribute as much to the strength of the beam

h



Design of Beams for Bending Stress
Relati e Efficienc  of Vario s Beam ShapesRelative Efficiency of Various Beam Shapes

• Ideal cross sectional shape;
– A/2 at a distance h/2, and another A/2 at –h/2A/2 at a distance h/2, and another A/2 at h/2

2 2

2 A h AhI      
  

0.5
/
IS Ah

h
 

• Standard wide-flange beams;

2 2 4  
   / 2h

g ;

L  th  id l b t l  th  S f t l  
0.35S Ah

– Less than ideal but larger than S of rectangular 
cross section of the same area and height
Th  b t b  t  thi  ( tibl  t  l li d b kli   – The web cannot be too thin ( susceptible to localized buckling or 
overstresses in shear)



Design of Beams for Bending Stress
Relati e Efficienc  of Vario s Beam ShapesRelative Efficiency of Various Beam Shapes



Design of Beams for Bending Stress
E l  5 6Example 5-6

– Minimum required diameter d1 of 
the wood post if the allowable 
bending stress is 15 MPa?bending stress is 15 MPa?

– Minimum required outer diameter 
d of the aluminum tube if the d2 of the aluminum tube if the 
inner diameter is 3/4d2 & allowable 
bending stress in the aluminum is g
50 MPa?



Design of Beams for Bending Stress
E l  5 8Example 5-8

• A temporary dam with horizontal planks (널빤지)  A 
supported by wood posts B (sunk into the ground, and act as 
cantilever). Height = 2 m, spacing = 0.8 m. σallow = 8.0 MPa

• Determine the minimum required dimension b of the post with Determine the minimum required dimension b of the post with 
square cross section.  



Nonprismatic beams

• Flexure formula still applies to nonprismatic
beams when the changes are gradual

P i ti  b  
x

My
I

  

• Prismatic beam: 
– same cross section throughout their lengths
– Maximum stress at the maximum bending moment

N  i ti  b  • Non prismatic beam: 
– cross section changes.
– Maximum stress may NOT be at the maximum 

bending moment



Nonprismatic beams
lexamples

• Fully stressed beam
– A beam with maximum allowable bending stress at every sectionA beam with maximum allowable bending stress at every section
– Minimize the amount of material  lightest possible beam



Nonprismatic beams
E l  5 9Example 5-9

• dB = 2 x dA

• Determine the maximum bending stress and compare this • Determine the maximum bending stress and compare this 
with the bending stress at the fixed end.



2nd exam

• 28 April 08:30 – 11:00
– If you can solve the home assignment with confidence, you will do If you can solve the home assignment with confidence, you will do 

a good job.
– More than 50% from the home assignments.More than 50% from the home assignments.
– ~90% from the examples and the problems from the textbook.

t– Level of difficulty will be similar to that of the 1st exam.
– Scope: Ch. 4, 5 & 12
– Try to interpret the problem in terms of physical behaviour. You will 

be required  to explain your answer physically.
– Partial point will be minimized this time (at most 30%)



Problem solving and Q & A Session

• Problem solving: 26 April 09:30 – 10:45

• Q & A session: 26 April 16:00 – 18:00 (?)
L ti  S k J S i  R  (38 118)• Location: Seok Jeong Seminar Room (38-118)

• Teaching Assistant will be available for discussion.g



Shear stresses in beams of rectangular cross 
sectionsection

• Pure bending: 
– bending moment & normal stressbending moment & normal stress

• Nonuniform bending: 
– bending moment, normal and shear stresses

• shear stresses  due to shear force  Vshear stresses  due to shear force, V
– Shear stress τ is parallel to the vertical side
– Shear stress τ is uniform across the width of 

the beam (even if they may vary over the 
height)height)



Shear Stress and Strain
Equality of shear stress on perpendicular planesEquality of shear stress on perpendicular planes

Assume a small element abc
1) Shear stress  τ1 on area bc1) Shear stress, τ1 on area bc

force τ1 x bc
2) F  ‘F  E ilib i ’  2) From ‘Force Equilibrium’ same 

shear stress in opposite side in 
it  di ti  opposite direction. 

Force τ1 x bc on left and right-hand 
sides form a couple (우력) sides form a couple (우력) 

3) From ‘Moment equilibrium’ 
Force τ2 x ac on top  τ1 x abc = 
τ2 x abc 1 2 



Shear stresses in beams of rectangular cross 
sectionsection

• Small element mn (two clues)
1. Shear stress acting on the front face vertical and 1. Shear stress acting on the front face vertical and 

uniform
2. Shear stress acting between horizontal layers of the 2. Shear stress acting between horizontal layers of the 

beam (same magnitude)
From ‘equality of shear stresses on perpendicular planes,q y p p p ,
Vertical shear stress = horizontal shear stress

– No horizontal shear stress at the bottom & the surface 
 τ = 0 at y = +h/2 & -h/2 (surface & bottom)



Shear stresses in beams of rectangular cross section
Derivation of shear formulaDerivation of shear formula

• Easier to evaluate horizontal shear stress 
– We then equate horizontal shear stress with vertical oneWe then equate horizontal shear stress with vertical one

Vertical Shear stress 
not shownnot shown

Vertical Shear stress 
not shown



Shear stresses in beams of rectangular cross 
sectionsection
Derivation of shear formula

• Normal stresses at cross section mn & m1n1

1
My   2

( )M dM y 
 

• Normal stress at element of area dA (using absolute values)
1 I

 2 I


– Left-hand face mp
– Right-hand face m1p1

1
MydA dA
I

 

( )M dM ydA dARight hand face m1p1
2

( )ydA dA
I

 



Shear stresses in beams of rectangular cross 
sectionsection
Derivation of shear formula

• Total horizontal forces acting on both faces
1 1

MyF dA dA
I

   Integration performed 
I 

from y1 to h/2
2 2

( )M dM yF dA dA
I

 
  

• From equilibrium;
F F F bdx  3 2 1F F F bdx  

3
( ) ( )M dM y My dM yF dA dA dA

I I I


    

• Shear stress;
1dM V VQ 1dM V VQydA ydA

dx Ib Ib Ib
     

   
V



Shear stresses in beams of rectangular cross 
sectionsection
Derivation of shear formula

• Shear Formula
VQ

/2h

Q dA
First moment of the cross sectional VQ

Ib
 

1y

Q ydA  area above the level at which the shear 
stress is being evaluated

– Shear stress at any point in the cross section of a rectangular beam
– V, I, b are constants while Q varies with distance y1 from the neutral , , y1

axis
– We don’t bother with sign conventionsg
– Not applicable to triangular or semicircular shape. why?

A li  l  t  i ti  b– Applies only to prismatic beams



Flexure Formula vs. Shear Formula

• Flexure Formula

M Di t  f  th  t l i
x

My
I

  
Distance from the neutral axis

Sh  F l

I
Constant at a given location

• Shear Formula

VQ Fi   b  h  l lVQ
Ib

  First moment above the level

Ib



Shear stresses in beams of rectangular cross 
sectionsection
Distribution in a rectangular beam

• Distribution of shear stress in a rectangular beam
– First moment QFirst moment Q

/2 2
2
12 4

h b hQ ydA ybdy y
 

    
 

 

– Shear stress

1y  

2h 

– Maximum shear stress (at y =0)

2
2
12 4

V h y
I


 

  
 

– Maximum shear stress (at y1=0)
2

max
3

8 2
Vh V

I A
  max 8 2I A



Shear stresses in beams of rectangular cross 
sectionsection
Effect of shear strains

– Shear stress varies parabolically over the height of a rectangular 
beam  shear strain also varies parabolically

– Cross sections becomes warped
– distribution of normal stress in nonuniform bending is about the g

same as in pure bending
 If V is constant along the axis of the beam, warping is the same at every 

cross section



Shear stresses in beams of rectangular cross 
sectionsection
Example 5-11

• Determine the normal and shear stress at point C. Show 
these stresses on a sketch of a stress element at point C.



τ in beams of circular cross section

• When a beam has a circular cross section?
– Shear stresses do not necessarily act parallel to y axisShear stresses do not necessarily act parallel to y axis
– Shear stress at point m act tangent to the boundary

• We can use shear formula only at the neutral axis
4r

2 34 2r r rQ A   
  

4
rI 


4 2

2 3 3
r r rQ Ay 


      

  
2b r

max
4
3

VQ V
Ib A

  



Shear Stresses in the Webs of Beams 
ith Flwith Flanges

• The distribution of shear stresses in a wide-flange beam is 
more complicated than in a rectangular beam.

– In the flange;
Both vertical and horizontal shear stressesBoth vertical and horizontal shear stresses

– In the web
Shear stress only in vertical directionShear stress only in vertical direction

Scope of this coursep



Shear Stresses in the Webs of Beams 
ith Flwith Flanges

• Shear stresses at line ef in the web
– Act parallel to the y-axisAct parallel to the y axis
– Uniformly distributed across the thickness of the web

VQ

– b: thickness of the web

VQ
Ib

 

– Q: first moment of shaded area



Shear Stresses in the Webs of Beams 
ith Flwith Flanges

• First moment of the shaded area: 

+ =

   

 1 1/ 2 / 2A b h h   2 1 1/ 2A t h y 

1 1 1 1
1 2 1

/ 2 / 2 / 2
2 2 2
h h h h yQ A A y          

   

   2 2 2 2
1 1 14

8 8
b tQ h h h y   



Shear Stresses in the Webs of Beams 
ith Flwith Flanges

• Shear stress in the web of the beam at distance y1 from the 
neutral axis is;

I  hi h I i  d fi d 

   2 2 2 2
1 1 14

8
VQ V b h h t h y
It It

       

– In which I is defined as;

 
33

3 3 31
1 1

( ) 1
12 12 12

b t hbhI bh bh th
    

– Valid only in the web (not in the flange)

• Maximum at y =0  minimum at y =+ h /2

 
12 12 12

• Maximum at y1=0, minimum at y1=+-h1/2

 2 2 2
max 1 18

V bh bh th
It

   
8It

 2 2
min 18

V bh bh
It

  



Shear Stresses in the Webs of Beams 
ith Flwith Flanges

• Area of shear stress diagram
2 ( )h h +

• Total shear force in the web
1 min 1 max min( )

3
h h    +

th

90  98% of the total shear force for beams of typical proportion; 

1
max min(2 )

3web
thV   

– 90 ~ 98% of the total shear force for beams of typical proportion; 

• Average shear stress in the web assuming the web carries all 
of the shear force

aver
V 

– Within + - 10% of the maximum shear stress
1

aver th



Shear Stresses in the Webs of Beams with Flanges
Example 5 14Example 5-14

• Vertical shear force = 45 kN. Maximum & minimum shear 
stress? Total shear force in the web?



Summary

• Introduction
• Pure Bending and Nonuniform Bendingg g
• Curvature of Beam

Longitudinal Strains in Beams• Longitudinal Strains in Beams
• Normal Stress in Beams x

My
I

  

• Design of Beams for Bending Stresses
• Nonprismatic BeamsNonprismatic Beams
• Shear Stresses in Beams of Rectangular Cross Section

VQ
Ib

 

• Shear Stresses in Beams of Circular Cross Section
• Shear Stresses in the Webs of Beams with Flanges


