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Ch.7 Analysis of Stress and Strain
- 3 May, 10 May, 12 May

Ch.8 Application of Plane Stress
— 17 May, 19 May

Ch.9 Deflection of Beams
— 24 May, 26 May, 31 May

Ch.10 Statically Indeterminate Beams

— 2 June, 7 June

Final Exam: 9 June
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Introduction

Plane Stress

Principal Stresses and Maximum Shear Stresses

Mohr’s Circle for Plane Stress

Hooke’s Law for Plane Stress

Triaxial Stress

Plane Strain
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o Stresses in inclined section: larger stresses may occur

— Finding the normal and shear stresses acting
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 We have already learned this!

— Uniaxial Stress & Stresses in inclined section

c,=0,005 0= %ax (1+cos20)

7,=—0,SIN60C0SH = —%sin 20

— Pure Shear &hStreses in inclined section

a
>
T\ 0

ol

N

o, =1SIn20

7, =7C0S20

TAO

ToAq sec ¢
\(r{)/lo sec 6

90°— 0

——
TAp tan @
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* ONE instrinsic state of stress can be expressed in many

many different ways depending on the reference axis (or
orientation of element).

— Similarity to force: One intrinsic state of force (vector) can be
expressed similarly depending on the reference axis.

— Difference from force: we use different transformation equations
from those of vectors

— Stress is NOT a vector BUT a (2" order) tensor = they do not
combine according to the parallelogram law of addition



Plane Stress L
Definition
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* Plane Stress: Stresses in 2D plane

 Normal stress, o : subscript identify the face on which the
stress act. Ex) 0,

 Shear stress, 1: 1st subscript denotes the face on which the
stress acts, and the 2" gives the direction on that face. Ex) 1,

-

Positive y face | Positive x face |

[
/ ”I__T_\-_l--_____
F4 S e
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» Sign convention
— Normal stress: tension (+), compression (-)

— Shear stress:

[acts on a positive face of an element in the positive direction of an axis (+) :
plus-plus or minus-minus

{acts on a positive face of an element in the negative direction of an axis (-):
plus-minus or minus-plus

y
’

(2

— T

= o |—=— <— Positive normal & shear stresses

Ty

T\'.\' €
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 Shear stresses in perpendicular planes are equal in
magnitude and directions shown in the below.

— Derived from the moment equilibrium

Txy — TyX

Tyy
Ty Oy
— 0 >
Tyy

* In 2D (plane stress), we need three (independent)
components to describe a complete state of stress

GX/ 7,
Oy Oy Ty ,7 o,
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Stresses on inclined sections
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+ Stresses acting on inclined sections assuming that o,, 0,,, T,,
are known.

— XY, axes are rotated counterclockwise through an angle 8
— Strategy??? -

— wedge shaped stress element

¥
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Stresses on inclined sections
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y
.\I
Vi Yi
X X
B\ ) /< | & oy Ao sec 6
o, 2

| Free Body Diagram /
¥ (0] N X a

Oy AO
ffnm—
(@) i\ X
-- ‘F_\'_\' AO
T
.

express in terms of “Force”

0
o, Ap sec 6 \

A—

T_\'.l'AU tan ¢ \
oyAgtan 6

* Force Equilibrium Equations in x, and y, directions
D F, =0, Ajsecd—o,A cosd—r, Assing
—o,Ajtandsind -z Ajtandcosd =0
D> F, =1, AsecO+o, Asind—r, A cosd
—o,Ajtandcosd+z, A tandsind =0
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Stresses on inclined sections
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« Using % =7» and simplifying

o, =0,C08° 0+0,sin® 6+2z, sindcosd

7, =—(0,—0,)sindcos 0+, (cos’ 6 —sin’ 6)
— When 6 =0,

o, =0, o = Ty
— When 6 =90,

o, =0, =—
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Transformation Equations "

SEOUL NATIONAL UNIVERSITY

* From half angle and double angle formulas

1
00829:§(1+C0826’) SinZH:%(l—COSZH) sin Qcosﬁzésin 20

* Transformation equations for plane stress

2" o520+ 1, sin 20 %
5 5 C0S20+7, sin Ty = — 5 Sin 26 +z,, c0s 26

— Intrinsic state of stress is the same but the reference axis are
different

— Derived solely from equilibrium—> applicable to stresses in any
kind of materials (linear or nonlinear or elastic or inelastic)



HHS
Plane Stress e,
Transformation Equations
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o
; oy,
(T,
sfE\ T ﬂ With cry=0.2crX & Txy=0.8 o,
oy .
f 0 t f } |

|
90° ) 180°

* Foroy,, 820 +90,

.cos20 -1, sin20
. . 2 2 '
— Making summations

o,+to, =0,+0,

— Sum of the normal stresses acting on perpendicular faces of plane
stress elements is constant and independent of 0
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Special Cases of Plane Stress
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« Uniaxial stress

o, = %(H c0s 20)

7, y. - _&Sln 29 ‘L O U":‘. X
1)1 2
* Pure Shear
o, =7, SIN20 T,, =T, 0526 .
o o=
* Biaxial Stress )
o, to, y — O, )
o, = + cos 260
' 2
x Oy .
o = Ysin 26
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 Determine the stress acting on an element inclined at an
angle 6 = 45°

y Y X1
N
A 0, =40 MPa \ o =103
' MPa B

€ =45
o ) \ /
Ty = 28 MPa gy~ i Mka / \T_l.,_\., =-35MPa
7, .= 110 MPa N
D T 0 > X 0 X
T,l'\'

Tyx €7 a'j\-l/‘\
FiG. 7-7 Example 7-1. (a) Element in lo,
.

plane stress, and (b) element inclined
at an angle 6 = 45° () (b)
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A (T_‘. =40 MPa

—— 7}.').‘
Tyy = 28 MPa
o, o,=110 MPa
o 0 = -
Tyy
Ty €5

N
o

o
T T

Nomal or Shear Stresses (MPa)
\ IN
(&

N
o

I
=)

| | | I | | | I | | | | I
180 270 360
rotation angle (theta)
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Introduction

Plane Stress (Transformation Equation for Plane Stress)

Principal Stresses and Maximum Shear Stresses

Mohr’s Circle for Plane Stress

Hooke’s Law for Plane Stress

Triaxial Stress

Plane Strain
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Stresses on inclined sections -
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+ Stresses acting on inclined sections assuming that o,, 0,,, T,,
are known.

— XY, axes are rotated counterclockwise through an angle 8

O, +0 O, —

o : o,—0, .
> > yc;032<9+rxysm29 Ty == > ySIn26’+rW00529

vV

y I\/ 06—
A
0_-“ (}'_\.I\
— Tyx Tyv :
5 X |
Ty
> l

Tyixy /
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Stresses on inclined sections -
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* A different way of obtaining transformed stresses

— For vector
Fu) (cos@ singd)\(F
F.) (-sin@ cosé )| F,
— For tensor (stress)
Ox Tap| [ COSO sing \(o, 7, | cos@ sind !
Ty Oy ) \—sin@ coséd)\ 7, o, |{-sin@ cosé
— O,—O0O
o =% % 052047 sin20 r,, =———sin20+7, c0s20
X 2 2 Xy Y1 2
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Introduction

Plane Stress

Principal Stresses and Maximum Shear Stresses

Mohr’s Circle for Plane Stress

Hooke’s Law for Plane Stress

Triaxial Stress

Plane Strain
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Principal stresses

Principal stresses

o, =40 MPa

Ty =28 MPa
I o, =110 MPa
R

Principal angle

- 1)

-
(0))] Qo o
() o ()

s
(=

Normal or Sheilr Stresses (MPa)

R
!

N
()

o

N
=)

Motation angle (theta)

2

L L I L L L L I ] L L L I
180 270
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* Principal Stresses (=S &)

— Maximum normal stress & Minimum normal stress

— Strategy?

— Taking derivatives of normal stress with respect to 0

do R h A
4= (0, -0, )sin20+2r,,c0s20 =0
dé
ery
— > tan20, -
o,—0,

— B,:orientation of the principal planes (planes on which the principal
stresses act)

* Principal stresses can be obtained by substituting 8,
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Principal Stresses and Maximum Shear Stresses Y
Principal stresses
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* Two values of angle 26, 0 °~ 360 °
.+ One:0°~180°

. The other (differ by 180°) : 180 °~ 360 °

* Two values of angle 8,: 0 °~ 180 *=> Principal angles
.+ One:0°~90°

. The other (differ by 90°) : 90 °~ 180 °

—> principal stresses occur on mutually perpendicular planes
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Calculation of principal stresses

? ? 27,
_oyto, o,-0, ) «—— tan26, =
o, = + O+ 1T p _
X 2 2 Xy O, O-y

Larger of two principal stresses
= Maximum Principal Stress
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* The smaller of the principal stresses (= minimum principal
stress)

0,+0,=0,+0,

* Putting into shear stress transformation equation

y - O-X - O-y
T, ., =— sin 20 + 7. Cc0Ss 20 0=—
MY1 2 Ry

sin26 +7,, c0s 20
— Shear stresses are zero on the principal stresses Same eduation for

principal angles
* Principal stresses

2
o,to o,— O
— y X y 2
O, = T +7,
2 2
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Principal Stresses and Maximum Shear Stresses
Principal stresses
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» Alternative way of finding the smaller of the principal stresses
(= minimum principal stress)

o, =0,
cos(26, +180) = — R

. T,
sin(26, +180) = —Fy

* By substituting into the transformation equations

2
o, to o,— O
0_2: X y_ X y +Txy2
2 2
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* Principal angles correspond to principal stresses

0p2 —> o,

— Both angles satisfy tan26, =0

— Procedure to distin

uish 0

N
1Y UIOi

p1
1) Substitute these into transformation equations > tell which is g,
2)  Orfind the angle that satisfies

20, =27 r
COS 2t = sin 26, :%
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« Uniaxial stress & Biaxial stress

— Principal planes? tan2g, -2
o, — 0O,

- 8,=0°and 90° = how do we get this? e I
* Pure Shear

— Principal planes?

- 8,=45° and 135° = how do we get this?

— |If Ty IS positive, 0, = Tyy &0, = Ty
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« Stress element is three dimensional

— Three principal stresses (o, ,0, and a5) on three mutually
perpendicular planes

[ ]

\ s
T
:“'1
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Maximum Shear Stress?

— Strategy?

— Taking derivatives of normal stress with respect to 0

d Txlyl -

5 ~(o,—0,)c0s20 -2z, 5in20 =0

o,—C
—> tan26, =- .

ery

— 0..orientation of the planes of the maximum positive and negative

shear stresses
« One:0°~90°
* The other (differ by 90°) : 90 °~ 180 °

-- Maximum positive and maximum negative shear stresses differ only in sign.

Why???
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Stresses -
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Maximum Shear Stress

* Relationship between Principal angles, 6,and angle of the
planes of maximum positive and negative shear stresses, 0,

tan 260, = - . —cot 20
tan 26, P

sin 26, , C0S 20,
cos26, sin20,

0 sin 26, sin 20, +cos 26, cos 20, =0

cos(26, -26,)=0 20, - 20, = +90°

6, =0, +45°
* The planes of maximum shear stress occur at 45° to the
principal planes
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Maximum Shear Stress
* sin20, & cos26, ? RJ(ZJ
c0s 20, = Dy sin 20, = - O % € a2 --2
R 2R 27

2
TmaX - \/( O-X ;O-yJ " TXYZ _é 951 B Qpl - 450

T ) O, —O0
coszeslz—% sin20,, =————

2R

e[ r et
Xy

» Maximum (positive or negative) shear stress, 1

' "maXx

e 2 2 o0 Maximum positive shear stress is
Tmax =+ > | T s 2 equal to one-half the difference of
the principal stress
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Maximum Shear Stress

« Normal stress at the plane of 1. ?

max *
Ty
Cos26, = —
R

O (o3 .
o, = L+ Y cos20+1,,sin20 €——
L 2 2 ’ - Ox~0y
sin20,, = —
2R

% =" 5 %= =9, <—— From Mr. Ahn’s observation

lormal stress acting on the planes of maximum positive shear
stresses equal to the average of the normal stresses on the x and
y planes.

A
I

— And same normal stress acts on the planes of maximum negative
shear stress

* Uniaxial, biaxial or pure shear?
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Stresses

In-PIane and Out_of_PIane Shear Stresses SEOUL NATIONAL UNIVERSITY

* So far we have dealt only with in-plane shear stress acting in
the xy plane.

— Maximum shear stresses by 45° rotations about the other two
principal axes

(Tmax)xlzi& (Tmax)y1 :io-l (Tmax)21:+(o-l_o-2)

2 2 T2

— The stresses obtained by rotations about the x, and y, axes are
‘out-of-plane shear stresses’

L~

\ s
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Example 7-3

1) Determine the principal stresses and show them on a sketch of a
properly oriented element

2) Determine the maximum shear stresses and show them on a
properly oriented element.

3

30 MPa

‘ 84 MPa
= 5e
32 MPa




| | | 5, =:92.4 :MPa: | | | | |
Example’.3 100 f + _____ RS TR TS ———

30 MPa

84 MPa
0 —

32 MPa

20

i

N 52=-33

';4"Mi='a

27 MPa -" B0 b ---------------- ............... ................ ________________ ,,,,,,,,,,,,,,, ................ ................ ________________
—max = -65'4 MPa

N\, - : 100 L L L J

rotation angle (theta)

/ 65.4 MPa

o
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» 16:00 - 18:00 17 May 2010

« Location ?

+ You are very welcome to come and discuss with 3/

 Updated (today) assignment is available at eTL.
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Mohr’s Circle for Plane Stress d
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* Mohr’s Circle

— Graphical representation of the transformation equation for stress
- Extremely useful to visualize the relationship between g, and 1,

— Also used for calculating principal stresses, maximum shear
stresses, and stresses on inclined sections

— Also used for other quantities of similar nature such as strain.



Mohr’s Circle for Plane Stress %W
Equations of Mohr’s Circle "
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* The transformation Equations for plane stress

o,+o, o0,-0, : O,—0,
o, = + cos260 +rt, SIn 260 T,, =—
X 2 2 Xy

X1 Y1

— Rearranging the above equations

sin26 +z,, cos 20

Oy + 0O Oy — O
Oxq ~ X - % Y cos 20 + 74y sin 20
2 2
O-X _O-y .
Txiyp =~ sin 260 + 74y cos 20

— Square both sides of each equation and sum the two equations
( _‘7><+‘7y)2Jr 2 _(‘Tx_ay)zJr 2
% 2 Txayr T 2 Pxy

— Equation of a circle in standard algebraic form

(x—x0)2 + y2 — R?
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Mohr’s Circle for Plane Stress (L
Equations Of I-V.IOhr,s CirCie SEOUL NATIO:iL UNIVERSITY
y + ay
Centre (oave, (Radius)? of a circle
o, to, UX—Uy 2 ,
O ave = 2 R= [ 2 +TXV

2 _R2

2

Z-xlyl

Recognized by Mohr in 1882
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Mohr’s Circle for Plane Stress d
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» Shearstress (+) | 6 (+) counterclockwise
CM‘\ — Chosen for this course!
0 X1
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Construction of Mohr’s Circle
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+ If stresses o,, o, and t,, acting on the x and y faces of a stress element
are known, the Mohr’s circle can be constructed in the following steps:

1.

2.

3.

Draw a set of coordinate axes with 6, on the x-axis and t,,,4 on the y-axis
Locate the center C of the circle at the point having ,,=c,,, and 7,;,4= 0

Locate point A, representing the stress conditions on the x face of the
element by plotting 5,,= , and t,,4= t,,. Point A corresponds to 6=0°

ocate point B, representing the stress condition on the y face of the
element by plotting 5,,= 5, and t,4,4=-1,,. Point B corresponds to 6=90°
Draw a line from point A to point B. This line is a diameter and passes
through the center C. Points A and B, representing the stresses on planes

90° to each other, are at the opposite ends of the diameter, and therefore
are 180° apart on the circle.

Using point C as the center, draw Mohr’s circle through point A and B.



Mohr’s Circle for Plane Stress Wty
Construction of Mohr’s Circle O
N L, Calculation of R from geometry
1 \A < 0y
1 « oy ‘i/ﬁ(e =90°)
@ T —— S

{T\.]\ P 1
] - =
D' X1V 0 Pz ¢ ﬁ T T W o

\ / ¢ : /ﬁl 26’.}| T.l';_\‘|

\ \/TU H . (}'2 A‘ 2 6 _L T".'T

0 = D(6=0) l

/\ e D s,
~d A(9=0)
\ gy T U-_ v s Oy — 0’_ v
: Taver = p) e > 3
(b) o,

FIG. 7-16 Construction of Mohr’s circle Toy
for plane stress (c)
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Stresses on an Inclined Element
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o Stresses acting on the faces oriented at an angle 0 from the
X-axis.

."'|\
!’f‘

I
— Measure an angle 2 8 ctw from radius CA |

T
D= (le d z-xlyl)

— Angle 26 in Mohr’s Circle corresponds to

an angle 0 on a stress element = 1
— We need to show that D is indeed given .1~ 1 —~
by the stress-transformation equations \ Ny VY TJ‘
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Mohr’s Circle for Plane Stress zg

Stresses on an inclined Element S
— From the geometry, o, = Oy ;G Y L Rcos 3 741 = Rsin g

— Considering the angle between the radius CA and horizontal axis,

cos(20+ ) = Ox 9 sin(20 + B) = i
2R R

a

— Expanding this (using addition formulas), " i}’“’zi‘f}
. . o, — O, L
cos 26 cos f—sIn 20sIn f = —— P \
2R |
Py

0] P,

sin 260.¢cos [ +cos 28sin _ ‘
P F=R -

A(6=0)

(c)
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Mohr’s Circle for Plane Stress Wty
Stresses on an inclined Eiement .

(o)

= T y0032¢9+rxysin2¢9 7 =—>_Ysin20+r. cos20
X 2 X Y1 2 Xy

— Multiplying first by cos26, the second by sin20, and then adding

1(o,—0 .
cosﬂzﬁ( ; y00329+rxysm26?j

— Multiplying first by sin28, the second by cos28, and then
SuU bStraCt| ng ay i B(6=90°)

— 5
: 1( o.—o, .
sinff==| — ~-sin 20+ 7, €0s 26 B
R 2
P

A(B=0)

s SN |

— Putting these into z *"3‘ INTIED
o, to, _ G e
o, = 5 +Rcos g Txlylstmﬂ 5
rr\.+ U'.\.

o,to, o0,-0 o,— 0

2

* Point D on Mohr’s circle, defined by the angle 26, represents the stress conditions on
the x, face defined by the angle 6




Mohr’s Circle for Plane Stress Gy
PrInCIpai Stresses SEOUL NATIONAL UNIVERSITY
* Principal stresses
Oy +0O o, +O0
o1=—— 4R o,=——Y_R
2 2
+ Cosine and sine of angle 28, can be obtained by inspection
o, —0, _ 7, Principal stresses &
C0s26,, = R Sin26,, = Y Prmmpfal planes
Maximum (-) _ Ty B(4=90°)
° shear stress
0,,=0,+90 1n*
Maximum (+) 2
shear stress [ ™. 1T
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General Comments
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 We can find the stresses acting on any inclined plane, as well

as principal stresses and maximum shear stresses from
Mohr’s Circle.

* All stresses on Mohr’s Circle in this course are in-plane
stresses < rotation of axes in the xy plane

 Special cases of

— Uniaxial stresses < ©

— Biaxial stresses < o 5

_ Pure sheer L e




CA

fv‘
Y

%
.r,\

Mohr’s Circle for Plane Stress _

1 -—‘Ax&—

|:xamp|e 7-4 (wnen principal stresses were

", !
«'-‘

"
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Using Mohr’s Circle, determine the stresses acting on an
element inclined at an angle 6 = 30°.

»
‘ D (6=130°)
y
l—20 =
B , =20 MPa ' 60° 30.3
N\ C \ A o,
0 B 35 35 (8=0)

o, =90 MPa (8=90°) ._

0 - >
4
D’

(6=120°) 37.5 MPa\ D
(a) 55 D! /72.5 MPa

% \ /
T.!'|.1'|
FIG. 7-18 Example 7-4. (a) Element in (b)

plane stress, and (b) the corresponding
Mohr’s circle. (Note: All stresses on the

circle have units of MPa.) A/\

30.3 MPa
/\'



Mohr’s Circle for Plane Stress (A
Example 7-5 (when both normal and shear stresses T
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were given)

* Using Mohr’s Circle, determine

— The stresses acting on an element inclined at an angle 6 = 40°

— The principal stresses, and maximum shear stresses

S5 (8, = 64.3°)

D (8=40°)

FIG.7-20 Example 7-5. (a) Element in
plane stress, and (b) the corresponding
Mohr’s circle. (Note: All stresses on the
circle have units of MPa.)

b —Ti
28 2
4 34 MPa
B\ l .
28 MPa 0 Py\(6,,=110.2°) /£
100 MPa
E 0 » X
-\
vl S
(65, = —24.85°)
@ 67 33

(b)




Mohr’s Circle for Plane Stress i,
Exampie 7-6 SEOUL NATIONAL UNIVERSITY

* Using Mohr’s Circle, determine
— The stresses acting on an element inclined at an angle 6 = 45°

— The principal stresses, and maximum shear stresses

50

o
m S,

4 10 MPa & >\ D’

Nae—

50 MPa
— 0 < =

Py (8, =116.6%)

Ty
40

B (6=90°)

(a)

FIG.7-22 Example 7-6. (a) Element in
plane stress, and (b) the corresponding 20 (10
Mohr’s circle. (Nore: All stresses on the

circle have units of MPa.) (b)




Mohr’s Circle for Plane Stress s
Alternative way of understanding

SEOUL NATIONAL UNIVERSITY

* The transformation Equations for plane stress

o.+to, O, — _ o,—C
o =YX Y0520 +7. Sin20 — z
Xl 2 2 Xy lel

sin26 +z,, cos 20
— In terms of principal stresses (shear stress becomes zero)

_o,+0, 0,-

o, > 202 cos 26 Ty, :—01202 sin 26
— Square both sides of each equation and sum the two equations
o, +0 —
(le o . 2 : )2 + Tflyl = (Gl 2 02 )2 (le’Txlyl)
— Equation of a circle in standard algebraic form /{2’6
2 2 _p2 B A Ox
- =R
(X XO) Ty 0 |(c,,0) C .0)
R
.

x1lyl
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Hooke’s Law for Plane Stress |_J

/“‘-\)xé.

SEOUL NATIONAL UNIVERSITY

o Stresses on inclined planes?
— Subject of previous sections

— Properties (E, G or v) were not needed

 Strain or deformation?

— Knowledge of material properties are necessary ‘y
. €€ ¢ I |4—_L
— Assumption: S e a7
i g ==
] lsotropic i i |
Homogeneous | ool | Ly
wLinearly elastic (follows Hooke’s law) / e

FIG. 7-25 Element of material subjected
to normal strains €, €,, and €.
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Hooke’s Law for Plane Stress d

 Normal strains under plane stress

. 1 1% -(—---EE 1
Normal strain,e, = —o + -¢o |

E y *():

______

. . , <
£, = E(GX _my) E: Elastic Modulus or Young’s Modulus

v: Poisson’s ratio

— Similarly ’J'k ————— =
_ 1( \ v : b
&, =—\0, ~VO,) g, ———(GX +o ) v P
E E ’ — ,
* Shear strains under plane stress

— Shear strain is the decrease of angle

- 0, and 0, has no effect

T
_ X
j/xy_

G G: Shear Modulus




Hooke’s Law for Plane Stress

SEOUL NATIONAL UNIVERSITY

« Hooke’s Law for Plane Stress

— Strains in terms of stresses (plane stress)

E E
— 2(8X+V6‘y) o, 1_V2(5y+vgx) o,=0

z

— Stresses in terms of strains (plane stress) /

Normal strain in z-direction can
be non-zero

_ by

G

Normal stress in z-direction is
non-zero

Ty =Gry

— They contain three material properties, but only two are

iIndependent.

_E
2(1+v)




Hooke’s Law for Plane Stress %g"’
Special cases

SEOUL NATIONAL UNIVERSITY

[

— Biaxial Stress o0.#0.0,#0,7,,=0

h ”—."

g, :é(a -vo ) £y :é(a -vo ) g, = (0' +0'y) Yy =0 a |
o, = 1_EV2 (ex +ng) o, = 1—Ev2 (gy +V8X) o,=0 Ty =0 l
— Uniaxial Stress &, 20,5, =0, 7, =0
1
&= EGX &, =&, = —VOI;‘ Ve =0 . .

o, =Eg,

o,=0,=1,=0

— Pure Shear o0,=0.0,=0,7,#0

6‘2 =0 Txy

yxy: G

Z:O Z-xy:G}/xy

A

(0]




Hooke’s Law for Plane Stress *«g_ﬁ@g
Volume Change "

SEOUL NATIONAL UNIVERSITY

* When a solid undergoes strains, its volume will change

— The original volume V, = abc

— Final volume after deformation V:=(a+ag)(b+bs,)(c+cs,) =abe(l+e,)(1+5,)(1+5,)
=V,(+¢,)1+¢,)1+¢,)

— Upon expanding the terms in the right hand side

Vi=V(d+e t+e, +¢,+e6, +e,8,+66,+868,,)

x¢y“z

— With small strains Vi=Ve@+é,+¢,+¢,)

— Volume change AV =V,-=V, (g, +¢, +¢,) /4 ‘//‘I - bey

{Does not have to be linearly elastic

wGeneral 3D (not confined to 2D) | 9

___________

JShear strain prOdUCe no Change in volume / """""""""""" -
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Hooke’s Law for Plane Stress zg
w2 o~ -—‘)}.{4‘—
VO|ume bnange SEOQOUL NATIONAL UNIVERSITY
* The unit volume change (= dilatation).
AV
e=——=g¢,+&, +¢,
VO
— (+) expansion, (-) contraction
— Unit volume/change in terms of stress
{plane stress or biaxial
AV 1-2y
V. T E oty vy At
: /{/‘/]ﬂ—t be,
[uniaxial e | |
- | o )iy
/ ““““““““““
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Hooke’s Law for Plane Stress (LY
Strain-Energy Density in Plane Stress "

SEOUL NATIONAL UNIVERSITY

o Strain Energy Density, u, in Plane Stress

— Strain energy stored in a unit volume of the material
1

u= E (o8, + o8&, + rxyyxy)

pd

— Strain energy density in terms of stresses alone

2

1, 2 T

3 3 y
u= oE (o, +o,"-2vo,0,)+

e

— Strain energy density in terms of strains alone
E

G 2
= — (& +&," +2ve,6,)+ Py
2(1-v?) g Y
' . ' . . 2 2
— Strain energy density in uniaxial stress | - ZXE U= EZX
— Strain energy density in pure shear LDy 87y
2G




Triaxial Stress %Mﬁ

SEOUL NATIONAL UNIVERSITY

* Triaxial stress:

— three normal stresses in three mutually perpendicular direction

— Shear stress exist in inclined section

v“

* Maximum shear stress -
(Tmax )z =% (GX ;O-y) (Tmax )x =% (Gy _O-Z) (Tm:.y ) = i(ax—;GZ) Ir.r;"ﬁf/}g:“ ______ '.1'
’ (a) |

FIG. 7-28 Mohr’s circles for an element
in triaxial stress

(b)
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Triaxial Stress

SEOUL NATIONAL UNIVERSITY

* Mohr’s Circles for 3D
— Rotation about z-axis (A)
— Rotation about x-axis (B)
— Rotation about y-axis (C)

— Rotation about skew axis (shaded area)

| Subject of more advanced study
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Triaxial Stress %}.,i
Hooke’s Law for Triaxial Stress .
 Strains in terms of Triaxial « Stresses in terms of strains
Stress
E
E, = Ox Y (o, +o, T wna-2v) [Aa+vie, +a,)]
E E
9 Vv E
y — E E (CTZ + O, o, = CrA-2) |:(1—V)8y +v (s, +gx)]
. O, |4 E
g, = E —E (Gx +0, o, = Cr)a—2) [(1—1/)5Z +v(e, +5y)]

* Unit Volume Change

1-2v
E

e =

(o,+o,+0,)
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Triaxial Stress

Eae%,
Strain Energy Density o

SEOUL NATIONAL UNIVERSITY

o Strain Energy Density, u, in Triaxial Stress (no shear stress)
1
u= E(ngx +o,6,+t0,¢8,)

— Strain Energy Density in terms of stresses

1 1%
U= E(ax2 + Gyz +0,%) —E(O'XO'y +o0,0,+0,0,)

— Strain Energy Density in terms of strains

E
U= 1- v\l +el+e)+2vice. +e.6. +¢€.&
oL EE e el ) ias, vas vaym)




Triaxial Stress Fiid
Sphericai Stress ° G SEOUL NATIONAL UNIVERSITY
 Spherical Stress :

— when three normal stresses are equal 0, =0, =0, =0,

— Any plane cut through the element will be subjected to the same
normal stress g,

y
9

— Normal Strain g, = %(1— 2v)

ag

Unit volume change

—_—
O 0

ezsgoz%(l—zv)zﬁ P .
E 1
Bulk modulus (of elasticity), K~ K

- 3(1-2) - @/ Compressibility, B
Uniform pressure in all directions: Hydrostatic

] AN object submerged in water or deep rock within the earth




Questions Y

SEOUL NATIONAL UNIVERSITY

— Biaxial Stress — Uniaxial Stress

Gx;tO,ay;éO,z'Xy:O Gxi0,0'y:O,Txyzo

P =£(0 —VG) g =£(0 —Va) g =—L(G +0') & =—0, & =& =—V—>=
X E X y y E y X z E X y —_— X X y z E
7/xy:O ]/Xy:O
?
E E '
x T _ 2 (8X+V8y) Oy = _ 2 (8y+V8X) o, =0 > o,=E¢ o0y=0,=7,=0
T :O b Ty




Plane Strain (2 HHS =)

SEOUL NATIONAL UNIVERSITY

« Strains

— reference directions vs. inclined directions

— Strain Transformation Equation = similar to stress transformation

equation

FIG. 7-30 Strain components €,, €,, and
Yy I the xy plane (plane strain)

PR peeep— |

0

a

(a) (b)

___________

O

(c)

—
Yy

(d)



Plane Strain (8 5 ¥ Y &)
Plane strain versus piane stress

r
vid
(2w}
'!ggg
X

3

/d"‘-%xé—

<3

SEOUL NATIONAL UNIVERSITY

Stresses

Plane stress

Plane strain

0,=0

0. 0y, and 7, may have

nonzero values

0:1'9 (T"'q

Strains

Yz =0 Yz = 0

€, €, €, and 7y,, may have
nonzero values

€.=0

€, €, and 7y,, may have

€,
e AR :f;f
! -
Zza
7.\‘).‘_,...;- JI'\;\ ; JIi' I
< : .f! ff _’{_) e:\
i 1/ ," _‘f
1
; OJ _____ o e ..,"—
[ i ! - X
- -
Z l
T =0 T =i

0., and 7, may have
nonzero values

Yz = 0

nonzero values




o - )
Plane Strain (22 H & 5) Jaay
Transformation equation for piane strain ... .

ATIONAL UNIVERSITY

Y1

(7] ;
FIG. 7-33 Deformations of an element in 4 \ / l
plane strain due to (a) normal strain €, O]_ A% =|
(b) normal strain €,, and (c) shear [ ) '
strain 7y, -
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Plane Strain (& & 2 & &) ,_ﬂx

Transformation equatlon for plane strain ... vuoun ouves

4

i

E««

Ad =g, dxcosf+¢& dysind+y, dycoso

Ex :ﬂ—g %coséwg Esin O+y,, — dy

ds " ds Y ds ds

—C0S @

£ =&,C08° O+¢&,5in° @+, cosdsiné
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Plane Strain (& &H 2 & E) (Y
Transformation equation for plane strain ..., ...ou uveesn
* Shear strain y,4:

— Decrease in angle between lines that were initially along the x1
and y1 axes.
7/ x1lyl =a+ ﬂ , \b -"
. )8\‘\ Ve = @+ a

A =—(g,—¢,)sin@cos O + & (cos® & —sin® 6) a

= (s, ¢, . ;
2 2 ,
\~ |
0

FIG. 7-34 Shear strain 7, ,, associated
with the x,y, axes



Plane Strain (& HH & E) i),
Transformation equation for piane strain ... .

ATIONAL UNIVERSITY

* Transformation equations for plane strain

Ev, = Y 4 ycosZH SN 26
X]_ 2
E X E TABLE 7-1 CORRESPONDING VARIABLES IN

= — y sin 26 C0S 26  THE TRANSFORMATION EQUATIONS FOR
2 PLANE STRESS (EQS. 7-4a AND b) AND
PLANE STRAIN (EQS. 7-71a AND b)

Stresses Strains
Ev, + & =&y + &
X1 Y1 X y

OTJ.' 6.1'
gy €y
iy Yy /2
OT\‘I E,\"l
TX1 Y1 %fl }‘1/2




20D
0%
\ \‘\{ﬁ:

Plane Strain (8 HH S =) gy
Transformation equation for plane strain .....cw oo

I_O

Y
|lﬁ§‘.\

&E

— Principal Angles

Ey —

ey

— Principal Strains

&9 = mat
12 > ( > ) (

— Maximum Shear Strain (and normal strains for the maximum
shear)

Vmax:\/(gx_gy)Z (7/Xy) c :gx+‘9y
2 2
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Plane Strain (& &H 2 & E) R
Mohr’s Circle -

SEOUL NATIONAL UNIVERSITY

 Monhr’s Circle for plane strain < same as plane stress

€]
. & > B(6=90°)
TABLE 7-1 CORRESPONDING VARIABLES IN \/
THE TRANSFORMATION EQUATIONS FOR 52
PLANE STRESS (EQS. 7-4a AND b) AND .
PLANE STRAIN (EQS. 7-71a AND b) —%
Stresses Strains l P
(0] P (& 50 ‘}{:I.\'I T €xi
a\' E.\' P T }’_\'\'
[ € 4’} 260 4+— T
o, €, D(6=6) l
S
Txy Yiesil 2 A(8=0)
> 2 _ € + 6_\‘ ¥4 & — E_\'
(T)‘I Exl [« €aver = 9 2
T\[\l 'Y.rlyl/z * Er‘»l e
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Plane Strain (& &H 2 & E) )
Strain I.v.leasurements SEOUL NATIONAL UNIVERSITY

« Strain gages

— A device for measuring normal strains on the surface of a stressed
object (e.g., rock)

— Electrical resistance of the wire is altered when it stretches or
shortens = converted to strain

— Sensitive: can measure 1x10°

— Three measurement = strains in any direction

« Strain rosette

~ Agroup of three gages arranged in (SIS
a particular direction 1

E (b) Three-element strain-gage rosettes
prewired



« TR = FRR,
Plane Strain (5 3 HS &) Fiid
Cal of Stresses from the strains .

» Strain transformation equation derived solely from the
consideration of geometry.

— No need to know material properties

* Determining Stresses from Strain

— Apply Hooke’s law > need to know material properties
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Plane Strain (& &H 2 & E) (Y
Example 7-8 "

SEOUL NATIONAL UNIVERSITY

A strain rosette is bonded to the surface of rock before it is
loaded. With normal strains ¢, €, and €, how to obtain €

x11 E:y1
and Yx1y1?
y Y1 :
c ]
s b (;{
B 0] 5
Il -

(b)

FIG. 7-38 Example 7-8. (a) 45° strain
rosette, and (b) element oriented at an
angle 6 to the xy axes
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Chapter 7. Analysis of Stress & Strain N,
CUti i ne SEOUL NATlo:iL UNIVERSITY
* Introduction

Plane Stress

Principal Stresses and Maximum Shear Stresses

Mohr’s Circle for Plane Stress

Hooke’s Law for Plane Stress

Triaxial Stress

Plane Strain



