Week 10, 3 May Week 11, 10 &12 May Week 12, 17 May

Mechanics in Energy Resources Engineering - Chapter 7 Analysis of Stress and Strain

Ki-Bok Min, PhD

Assistant Professor Energy Resources Engineering Seoul National University

- Mean: 65.3, standard deviation: 12.9
- Max: 86.0, Min: 30.0

- Mean: 63.8, standard deviation: 20.79
- Max: 98.0, Min: 21.0

- Ch.7 Analysis of Stress and Strain
 - 3 May, 10 May, 12 May
- Ch.8 Application of Plane Stress
 - 17 May, 19 May
- Ch.9 Deflection of Beams
 - 24 May, 26 May, 31 May
- Ch.10 Statically Indeterminate Beams
 - 2 June, 7 June
- Final Exam: 9 June

- Introduction
- Plane Stress
- Principal Stresses and Maximum Shear Stresses
- Mohr's Circle for Plane Stress
- Hooke's Law for Plane Stress
- Triaxial Stress
- Plane Strain

Introduction

- Stresses in cross section
 P o ______
- Stresses in inclined section: larger stresses may occur
 - Finding the normal and shear stresses acting on inclined section is necessary
 - Main content of Ch.5!

SEOUL NATIONAL UNIVERSITY

- We have already learned this!
 - Uniaxial Stress & Stresses in inclined section

$$\sigma_{\theta} = \sigma_x \cos^2 \theta = \frac{1}{2} \sigma_x \left(1 + \cos 2\theta \right)$$

$$\tau_{\theta} = -\sigma_x \sin \theta \cos \theta = -\frac{\sigma_x}{2} \sin 2\theta$$

- Pure Shear & Streses in inclined section

- ONE instrinsic state of stress can be expressed in many many different ways depending on the reference axis (or orientation of element).
 - Similarity to force: One intrinsic state of force (vector) can be expressed similarly depending on the reference axis.
 - Difference from force: we use different transformation equations from those of vectors
 - Stress is NOT a vector BUT a (2nd order) tensor → they do not combine according to the parallelogram law of addition

Plane Stress Definition

- Plane Stress: Stresses in 2D plane
- Normal stress, σ : subscript identify the face on which the stress act. Ex) σ_{x}
- Shear stress, τ : 1st subscript denotes the face on which the stress acts, and the 2nd gives the direction on that face. Ex) τ_{xv}

Plane Stress Definition

SEOUL NATIONAL UNIVERSITY

- Sign convention
 - Normal stress: tension (+), compression (-)
 - Shear stress:

ন্ধ acts on a positive face of an element in the positive direction of an axis (+) : plus-plus or minus-minus

ন্ধ acts on a positive face of an element in the negative direction of an axis (-): plus-minus or minus-plus

Plane Stress Definition

SEOUL NATIONAL UNIVERSITY

- Shear stresses in perpendicular planes are equal in magnitude and directions shown in the below.
 - Derived from the moment equilibrium

$$\tau_{xy} = \tau_{yx}$$

• In 2D (plane stress), we need three (independent) components to describe a complete state of stress

$$\sigma_x \sigma_y \sigma_y$$

$$\begin{bmatrix} \sigma_{x} & \tau_{xy} \\ \tau_{yx} & \sigma_{y} \end{bmatrix}$$

- Stresses acting on inclined sections assuming that $\sigma_{x},\,\sigma_{y},\,\tau_{xy}$ are known.
 - $x_1 y_1$ axes are rotated counterclockwise through an angle θ
 - Strategy??? →
 - wedge shaped stress element

SEOUL NATIONAL UNIVERSITY

Force Equilibrium Equations in x₁ and y₁ directions

$$\sum F_{x_1} = \sigma_{x_1} A_0 \sec \theta - \sigma_x A_0 \cos \theta - \tau_{xy} A_0 \sin \theta$$
$$-\sigma_y A_0 \tan \theta \sin \theta - \tau_{yx} A_0 \tan \theta \cos \theta = 0$$
$$\sum F_{y_1} = \tau_{x_1 y_1} A_0 \sec \theta + \sigma_x A_0 \sin \theta - \tau_{xy} A_0 \cos \theta$$
$$-\sigma_y A_0 \tan \theta \cos \theta + \tau_{yx} A_0 \tan \theta \sin \theta = 0$$

SEOUL NATIONAL UNIVERSITY

• Using $\tau_{xy} = \tau_{yx}$ and simplifying

 $\sigma_{x_1} = \sigma_x \cos^2 \theta + \sigma_y \sin^2 \theta + 2\tau_{xy} \sin \theta \cos \theta$

$$\tau_{x_1y_1} = -(\sigma_x - \sigma_y)\sin\theta\cos\theta + \tau_{xy}(\cos^2\theta - \sin^2\theta)$$

- When
$$\theta = 0$$
,

$$\sigma_{x_1} = \sigma_x \qquad \qquad \tau_{x_1 y_1} = \tau_{xy}$$

- When $\theta = 90$,

$$\sigma_{x_1} = \sigma_y \qquad \tau_{x_1y_1} = -\tau_{xy}$$

Plane Stress Transformation Equations

SEOUL NATIONAL UNIVERSITY

• From half angle and double angle formulas

$$\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta) \qquad \qquad \sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta) \qquad \qquad \sin \theta \cos \theta = \frac{1}{2}\sin 2\theta$$

• Transformation equations for plane stress

$$\sigma_{x_1} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta \qquad \qquad \tau_{x_1y_1} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$$

- Intrinsic state of stress is the same but the reference axis are different
- Derived solely from equilibrium → applicable to stresses in any kind of materials (linear or nonlinear or elastic or inelastic)

Plane Stress Transformation Equations

SEOUL NATIONAL UNIVERSITY

With
$$\sigma_y = 0.2\sigma_x \& \tau_{xy} = 0.8 \sigma_x$$

• For σ_{y1} , $\theta \rightarrow \theta + 90$,

ng summations $\frac{\sigma_{y_1}}{2}$

$$\sigma_{y_1} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos 2\theta - \tau_{xy} \sin 2\theta$$

- Making summations

 $\sigma_{x_1} + \sigma_{y_1} = \sigma_x + \sigma_y$

– Sum of the normal stresses acting on perpendicular faces of plane stress elements is constant and independent of $\boldsymbol{\theta}$

Plane Stress Special Cases of Plane Stress

SEOUL NATIONAL UNIVERSITY

• Uniaxial stress

$$\sigma_{x_1} = \frac{\sigma_x}{2} (1 + \cos 2\theta) \qquad \tau_{x_1 y_1} = -\frac{\sigma_x}{2} \sin 2\theta$$

 σ_x o σ_x x

Pure Shear

$$\sigma_{x_1} = \tau_{xy} \sin 2\theta \qquad \tau_{x_1y_1} = \tau_{xy} \cos 2\theta$$

Biaxial Stress

$$\sigma_{x_1} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta$$
$$\tau_{x_1 y_1} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta$$

Plane Stress Example 7-1

SEOUL NATIONAL UNIVERSITY

• Determine the stress acting on an element inclined at an angle $\theta = 45^{\circ}$

Plane Stress Example 7-1

- Introduction
- Plane Stress (Transformation Equation for Plane Stress)
- Principal Stresses and Maximum Shear Stresses
- Mohr's Circle for Plane Stress
- Hooke's Law for Plane Stress
- Triaxial Stress
- Plane Strain

- Stresses acting on inclined sections assuming that $\sigma_{x},\,\sigma_{y},\,\tau_{xy}$ are known.
 - $x_1 y_1$ axes are rotated counterclockwise through an angle θ

SEOUL NATIONAL UNIVERSITY

- A different way of obtaining transformed stresses
 - For vector

$$\begin{pmatrix} F_{x1} \\ F_{y1} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} F_{x} \\ F_{y} \end{pmatrix}$$

- For tensor (stress)

$$\begin{pmatrix} \sigma_{x1} & \tau_{x1y1} \\ \tau_{x1y1} & \sigma_{y1} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \sigma_{x} & \tau_{xy} \\ \tau_{xy} & \sigma_{y} \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}^{T}$$

$$\sigma_{x_1} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2}\cos 2\theta + \tau_{xy}\sin 2\theta \qquad \tau_{x_1y_1} = -\frac{\sigma_x - \sigma_y}{2}\sin 2\theta + \tau_{xy}\cos 2\theta$$

- Introduction
- Plane Stress
- Principal Stresses and Maximum Shear Stresses
- Mohr's Circle for Plane Stress
- Hooke's Law for Plane Stress
- Triaxial Stress
- Plane Strain

Plane Stress Example 7-1

- Principal Stresses (주응력)
 - Maximum normal stress & Minimum normal stress
 - Strategy?
 - Taking derivatives of normal stress with respect to $\boldsymbol{\theta}$

$$\frac{d\sigma_{x1}}{d\theta} = -(\sigma_x - \sigma_y)\sin 2\theta + 2\tau_{xy}\cos 2\theta = 0$$

- θ_p :orientation of the principal planes (planes on which the principal stresses act)
- Principal stresses can be obtained by substituting θ_{p}

- Two values of angle $2\theta_p$: 0 °~ 360 °
 - One : 0 °~ 180 °
 - The other (differ by 180°) : 180 °~ 360 °
- Two values of angle θ_p : 0 °~ 180 ° \rightarrow Principal angles
 - One : 0 °~ 90 °
 - The other (differ by 90°) : 90 °~ 180 °
- \rightarrow principal stresses occur on mutually perpendicular planes

SEOUL NATIONAL UNIVERSITY

• By substituting,

$$\sigma_{x_1} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \left(\frac{\sigma_x - \sigma_y}{2R}\right) + \tau_{xy} \left(\frac{\tau_{xy}}{R}\right)$$
$$\sigma_1 = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Larger of two principal stresses = Maximum Principal Stress

SEOUL NATIONAL UNIVERSITY

The smaller of the principal stresses (= minimum principal stress)

$$\sigma_1 + \sigma_2 = \sigma_x + \sigma_y \qquad \longrightarrow \qquad \sigma_2 = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

• Putting into shear stress transformation equation

$$\tau_{x_{1}y_{1}} = -\frac{\sigma_{x} - \sigma_{y}}{2} \sin 2\theta + \tau_{xy} \cos 2\theta \qquad 0 = -\frac{\sigma_{x} - \sigma_{y}}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$$

- Shear stresses are zero on the principal stresses Same equation for principal angles

• Principal stresses

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

SEOUL NATIONAL UNIVERSITY

• Alternative way of finding the smaller of the principal stresses (= minimum principal stress)

$$\cos(2\theta_p + 180) = -\frac{\sigma_x - \sigma_y}{2R} \qquad \sin(2\theta_p + 180) = -\frac{\tau_{xy}}{R}$$

• By substituting into the transformation equations

$$\sigma_2 = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

SEOUL NATIONAL UNIVERSITY

Principal angles correspond to principal stresses

$$\theta_{p1} \longrightarrow \sigma_1$$

 $\theta_{p_2} \longrightarrow \sigma_2$

- Both angles satisfy $\tan 2\theta_p = 0$
- Procedure to distinguish θ_{p1} from θ_{p2}
 - 1) Substitute these into transformation equations \rightarrow tell which is σ_1 .
 - 2) Or find the angle that satisfies

$$\cos 2\theta_p = \frac{\sigma_x - \sigma_y}{2R} \qquad \sin 2\theta_p = \frac{\tau_{xy}}{R}$$

Principal Stresses and Maximum Shear Stresses Special cases

SEOUL NATIONAL UNIVERSITY

- Pure Shear
 - Principal planes?
 - $\theta_p = 45^\circ$ and $135^\circ \rightarrow$ how do we get this?
 - If T_{xy} is positive, $\sigma_1 = T_{xy} \& \sigma_2 = -T_{xy}$

 τ_{xy}

Principal Stresses and Maximum Shear Stresses The Third Principal Stress

- Stress element is three dimensional
 - Three principal stresses (σ_1 , σ_2 and σ_3) on three mutually perpendicular planes

Principal Stresses and Maximum Shear Stresses Maximum Shear Stress

- Maximum Shear Stress?
 - Strategy?
 - Taking derivatives of normal stress with respect to θ

$$\frac{d\tau_{x1y1}}{d\theta} = -(\sigma_x - \sigma_y)\cos 2\theta - 2\tau_{xy}\sin 2\theta = 0$$

$$\tan 2\theta_s = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}}$$

- θ_s :orientation of the planes of the maximum positive and negative shear stresses
 - One : 0 °~ 90 °
 - The other (differ by 90°) : 90 °~ 180 °
- -- Maximum positive and maximum negative shear stresses differ only in sign. Why???

Principal Stresses and Maximum Shear Stresses Maximum Shear Stress

SEOUL NATIONAL UNIVERSITY

• Relationship between Principal angles, θ_p and angle of the planes of maximum positive and negative shear stresses, θ_s

$$\tan 2\theta_s = -\frac{1}{\tan 2\theta_p} = -\cot 2\theta_p$$

$$\frac{\sin 2\theta_s}{\cos 2\theta_s} + \frac{\cos 2\theta_p}{\sin 2\theta_p} = 0 \qquad \sin 2\theta_s \sin 2\theta_p + \cos 2\theta_s \cos 2\theta_p = 0$$

$$\cos\left(2\theta_s - 2\theta_p\right) = 0 \qquad \qquad 2\theta_s - 2\theta_p = \pm 90^\circ$$

$$\theta_s = \theta_p \pm 45^\circ$$

 The planes of maximum shear stress occur at 45° to the principal planes

Principal Stresses and Maximum Shear Stresses Maximum Shear Stress

Maximum (positive or negative) shear stress, τ_{max}

$$\tau_{\max} = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \qquad \tau_{\max} = \pm \frac{\sigma_1 - \sigma_2}{2}$$

Maximum positive shear stress is equal to one-half the difference of the principal stress

Principal Stresses and Maximum Shear Stresses Maximum Shear Stress

SEOUL NATIONAL UNIVERSITY

 \mathcal{T}_{rv}

Normal stress at the plane of τ_{max}?

- Normal stress acting on the planes of maximum positive shear stresses equal to the average of the normal stresses on the x and y planes.
- And same normal stress acts on the planes of maximum negative shear stress
- Uniaxial, biaxial or pure shear?
Principal Stresses and Maximum Shear Stresses In-Plane and Out-of-Plane Shear Stresses

SEOUL NATIONAL UNIVERSITY

- So far we have dealt only with in-plane shear stress acting in the xy plane.
 - Maximum shear stresses by 45° rotations about the other two principal axes

$$(\tau_{\max})_{x1} = \pm \frac{\sigma_2}{2}$$
 $(\tau_{\max})_{y1} = \pm \frac{\sigma_1}{2}$ $(\tau_{\max})_{z1} = \pm \frac{(\sigma_1 - \sigma_2)}{2}$

The stresses obtained by rotations about the x₁ and y₁ axes are 'out-of-plane shear stresses'

Principal Stresses and Maximum Shear Stresses Example 7-3

- 1) Determine the principal stresses and show them on a sketch of a properly oriented element
- 2) Determine the maximum shear stresses and show them on a properly oriented element.

Q & A Session

SEOUL NATIONAL UNIVERSITY

- 16:00 18:00 17 May 2010
- Location ?
- You are very welcome to come and discuss with

• Updated (today) assignment is available at eTL.

Mohr's Circle for Plane Stress

- Mohr's Circle
 - Graphical representation of the transformation equation for stress
 - Extremely useful to visualize the relationship between σ_x and τ_{xy}
 - Also used for calculating principal stresses, maximum shear stresses, and stresses on inclined sections
 - Also used for other quantities of similar nature such as strain.

Mohr's Circle for Plane Stress Equations of Mohr's Circle

SEOUL NATIONAL UNIVERSITY

• The transformation Equations for plane stress

$$\sigma_{x_{1}} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta \qquad \tau_{x_{1}y_{1}} = -\frac{\sigma_{x} - \sigma_{y}}{2} \sin 2\theta + \tau_{xy} \cos 2\theta \\ - \text{ Rearranging the above equations} \\ \sigma_{x_{1}} - \frac{\sigma_{x} + \sigma_{y}}{2} = \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta \\ \tau_{x_{1}y_{1}} = -\frac{\sigma_{x} - \sigma_{y}}{2} \sin 2\theta + \tau_{xy} \cos 2\theta \\ - \text{ Square both sides of each equation and sum the two equations} \\ (\sigma_{x_{1}} - \frac{\sigma_{x} + \sigma_{y}}{2})^{2} + \tau_{x_{1}y_{1}}^{2} = (\frac{\sigma_{x} - \sigma_{y}}{2})^{2} + \tau_{xy}^{2} \\ - \frac{\sigma_{x} - \sigma_{y}}{2} + \tau_{xy}^{2} = (\frac{\sigma_{x} - \sigma_{y}}{2})^{2} + \tau_{xy}^{2} = (\frac{\sigma_{x} - \sigma_{y}}{2})^{2} + \tau_{xy}^{2} \\ - \frac{\sigma_{x} + \sigma_{y}}{2} + \tau_{xy}^{2} = (\frac{\sigma_{x} - \sigma_{y}}{2})^{2} + \tau_{xy}^{2} = (\frac{\sigma_{x} - \sigma_{y}}{2})^{2} + \tau_{xy}^{2} \\ - \frac{\sigma_{x} + \sigma_{y}}{2} + \tau_{xy}^{2} = (\frac{\sigma_{x} - \sigma_{y}}{2})^{2} + \tau_{xy}^{2} = (\frac{\sigma_{x} - \sigma_{y}}{2})^{2} + \tau_{xy}^{2} \\ - \frac{\sigma_{x} + \sigma_{y}}{2} + \tau_{xy}^{2} = (\frac{\sigma_{x} - \sigma_{y}}{2})^{2} + \tau_{xy}^{2} \\ - \frac{\sigma_{x} + \sigma_{y}}{2} + \tau_{xy}^{2} = (\frac{\sigma_{x} - \sigma_{y}}{2})^{2} + \tau_{xy}^{2} = (\frac{\sigma_{x} - \sigma_{y}}{2})^{2} + \tau_{xy}^{2} \\ - \frac{\sigma_{x} + \sigma_{y}}{2} + \tau_{xy}^{2} = (\frac{\sigma_{x} - \sigma_{y}}{2})^{2} + \tau_{xy}^{2} \\ - \frac{\sigma_{x} + \sigma_{y}}{2} + \tau_{xy}^{2} = (\frac{\sigma_{x} - \sigma_{y}}{2})^{2} + \tau_{xy}^{2} = (\frac{\sigma_{x} - \sigma_{y}}{2})^{2} + \tau_{xy}^{2} \\ - \frac{\sigma_{x} + \sigma_{y}}{2} + \tau_{xy}^{2} + \tau_{xy}^{2} = (\frac{\sigma_{x} - \sigma_{y}}{2})^{2} + \tau_{xy}^{2} + \tau_{xy}^{$$

- Equation of a circle in standard algebraic form

$$(x - x_0)^2 + y^2 = R^2$$

Mohr's Circle for Plane Stress Equations of Mohr's Circle

Mohr's Circle for Plane Stress Two forms of Mohr's Circle

SEOUL NATIONAL UNIVERSITY

- Shear stress (+) $\downarrow \quad \theta$ (+) counterclockwise
 - Chosen for this course!

• Shear stress (+) \uparrow θ (+) clockwise

Mohr's Circle for Plane Stress Construction of Mohr's Circle

- If stresses σ_x , σ_y and τ_{xy} acting on the x and y faces of a stress element are known, the Mohr's circle can be constructed in the following steps:
 - 1. Draw a set of coordinate axes with σ_{x1} on the x-axis and τ_{x1y1} on the y-axis
 - 2. Locate the center C of the circle at the point having $\sigma_{x1} = \sigma_{ave}$ and $\tau_{x1y1} = 0$
 - 3. Locate point A, representing the stress conditions on the x face of the element by plotting $\sigma_{x1} = \sigma_x$ and $\tau_{x1y1} = \tau_{xy}$. Point A corresponds to $\theta = 0^\circ$
 - 4. Locate point B, representing the stress condition on the y face of the element by plotting $\sigma_{x1} = \sigma_y$ and $\tau_{x1y1} = -\tau_{xy}$. Point B corresponds to $\theta = 90^{\circ}$
 - 5. Draw a line from point A to point B. This line is a diameter and passes through the center C. Points A and B, representing the stresses on planes 90° to each other, are at the opposite ends of the diameter, and therefore are 180° apart on the circle.
 - 6. Using point C as the center, draw Mohr's circle through point A and B.

Mohr's Circle for Plane Stress Construction of Mohr's Circle

Mohr's Circle for Plane Stress Stresses on an Inclined Element

SEOUL NATIONAL UNIVERSITY

- Stresses acting on the faces oriented at an angle θ from the x-axis.
 - Measure an angle 2 θ ctw from radius CA

 $D = (\sigma_{x_1}, \tau_{x_1y_1})$

- Angle 2θ in Mohr's Circle corresponds to an angle θ on a stress element
- We need to show that D is indeed given by the stress-transformation equations

Mohr's Circle for Plane Stress Stresses on an Inclined Element

- From the geometry,

$$\sigma_{x1} = \frac{\sigma_x + \sigma_y}{2} + R \cos \beta \qquad \tau_{x1y1} = R \sin \beta$$
- Considering the angle between the radius CA and horizontal axis,

$$\cos(2\theta + \beta) = \frac{\sigma_x - \sigma_y}{2R} \qquad \sin(2\theta + \beta) = \frac{\tau_{xy}}{R}$$

- Expanding this (using addition formulas),

$$\cos 2\theta \cos \beta - \sin 2\theta \sin \beta = \frac{\sigma_x - \sigma_y}{2R}$$

$$\sin 2\theta \cos \beta + \cos 2\theta \sin \beta = \frac{\tau_{xy}}{R}$$

Mohr's Circle for Plane Stress Stresses on an Inclined Element

SEOUL NATIONAL UNIVERSITY

 Point D on Mohr's circle, defined by the angle 2θ, represents the stress conditions on the x₁ face defined by the angle θ

Mohr's Circle for Plane Stress Principal Stresses

SEOUL NATIONAL UNIVERSITY

Principal stresses

$$\sigma_1 = \frac{\sigma_x + \sigma_y}{2} + R \qquad \qquad \sigma_2 = \frac{\sigma_x + \sigma_y}{2} - R$$

• Cosine and sine of angle $2\theta_{p1}$ can be obtained by inspection

Mohr's Circle for Plane Stress General Comments

- We can find the <u>stresses acting on any inclined plane</u>, as well as <u>principal stresses</u> and <u>maximum shear stresses</u> from Mohr's Circle.
- All stresses on Mohr's Circle in this course are in-plane stresses ← rotation of axes in the xy plane

Mohr's Circle for Plane Stress Example 7-4 (when principal stresses were given)

SEOUL NATIONAL UNIVERSITY

• Using Mohr's Circle, determine the stresses acting on an element inclined at an angle $\theta = 30^{\circ}$.

Mohr's Circle for Plane Stress Example 7-5 (when both normal and shear stresses were given)

- Using Mohr's Circle, determine
 - The stresses acting on an element inclined at an angle θ = 40°
 - The principal stresses, and maximum shear stresses

Mohr's Circle for Plane Stress Example 7-6

- Using Mohr's Circle, determine
 - The stresses acting on an element inclined at an angle θ = 45°
 - The principal stresses, and maximum shear stresses

Mohr's Circle for Plane Stress Alternative way of understanding

SEOUL NATIONAL UNIVERSITY

• The transformation Equations for plane stress

$$\sigma_{x_{1}} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

$$\tau_{x_{1}y_{1}} = -\frac{\sigma_{x} - \sigma_{y}}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$$

$$- \text{ In terms of principal stresses (shear stress becomes zero)}$$

$$\sigma_{x_{1}} - \frac{\sigma_{1} + \sigma_{2}}{2} = \frac{\sigma_{1} - \sigma_{2}}{2} \cos 2\theta$$

$$\tau_{x_{1}y_{1}} = -\frac{\sigma_{1} - \sigma_{2}}{2} \sin 2\theta$$

$$- \text{ Square both sides of each equation and sum the two equations}$$

$$(\sigma_{x_{1}} - \frac{\sigma_{x} + \sigma_{y}}{2})^{2} + \tau_{x_{1}y_{1}}^{2} = (\frac{\sigma_{1} - \sigma_{2}}{2})^{2}$$

$$- \text{ Equation of a circle in standard algebraic form}$$

$$(x - x_{0})^{2} + y^{2} = R^{2}$$

$$\sigma_{x_{1}y_{1}}^{2\theta}$$

Hooke's Law for Plane Stress

SEOUL NATIONAL UNIVERSITY

- Stresses on inclined planes?
 - Subject of previous sections
 - Properties (E, G or v) were not needed
- Strain or deformation?
 - Knowledge of material properties are necessary
 - Assumption:

ন্ধ Isotropic

ର୍ Homogeneous

ন্ধLinearly elastic (follows Hooke's law)

FIG. 7-25 Element of material subjected to normal strains ϵ_x , ϵ_y , and ϵ_z

Hooke's Law for Plane Stress

- Normal strains under plane stress Normal strain, $\varepsilon_{\mathbf{x}} = \frac{1}{E}\sigma_{\mathbf{x}} + \frac{-\nu}{E}\sigma_{\mathbf{y}}$ $\varepsilon_{\mathbf{x}} = \frac{1}{E}(\sigma_{\mathbf{x}} - \nu\sigma_{\mathbf{y}})$ E: Elastic Modulus or Young's Modulus \mathbf{v} : Poisson's ratio - Similarly $\varepsilon_{\mathbf{y}} = \frac{1}{E}(\sigma_{\mathbf{y}} - \nu\sigma_{\mathbf{x}})$ $\varepsilon_{\mathbf{z}} = -\frac{\nu}{E}(\sigma_{\mathbf{x}} + \sigma_{\mathbf{y}})$ • Shear strains under plane stress
 - Shear strain is the decrease of angle
 - $-\sigma_x$ and σ_y has no effect

$$\gamma_{xy} = \frac{\tau_{xy}}{G}$$
 G: Shear Modulus

Hooke's Law for Plane Stress

SEOUL NATIONAL UNIVERSITY

Hooke's Law for Plane Stress
 – Strains in terms of stresses (plane stress)

Stresses in terms of strains (plane stress)

Normal strain in z-direction can be non-zero

$$\varepsilon_{x} = \frac{1}{E} \left(\sigma_{x} - \nu \sigma_{y} \right) \qquad \varepsilon_{y} = \frac{1}{E} \left(\sigma_{y} - \nu \sigma_{x} \right) \qquad \varepsilon_{z} = -\frac{\nu}{E} \left(\sigma_{x} + \sigma_{y} \right) \qquad \gamma_{xy} = \frac{\tau_{xy}}{G}$$

Normal stress in z-direction is non-zero

$$\sigma_{x} = \frac{E}{1 - v^{2}} \left(\varepsilon_{x} + v \varepsilon_{y} \right) \qquad \sigma_{y} = \frac{E}{1 - v^{2}} \left(\varepsilon_{y} + v \varepsilon_{x} \right) \qquad \sigma_{z} = 0 \qquad \qquad \tau_{xy} = G \gamma_{xy}$$

They contain three material properties, but only two are independent.

$$G = \frac{E}{2(1+\nu)}$$

Hooke's Law for Plane Stress Special cases

SEOUL NATIONAL UNIVERSITY

x

- Biaxial Stress
$$\sigma_x \neq 0, \sigma_y \neq 0, \tau_{xy} = 0$$

 $\varepsilon_x = \frac{1}{E} (\sigma_x - v\sigma_y)$ $\varepsilon_y = \frac{1}{E} (\sigma_y - v\sigma_x)$ $\varepsilon_z = -\frac{v}{E} (\sigma_x + \sigma_y)$ $\gamma_{xy} = 0$
 $\sigma_x = \frac{E}{1 - v^2} (\varepsilon_x + v\varepsilon_y)$ $\sigma_y = \frac{E}{1 - v^2} (\varepsilon_y + v\varepsilon_x)$ $\sigma_z = 0$ $\tau_{xy} = 0$
- Uniaxial Stress $\sigma_x \neq 0, \sigma_y = 0, \tau_{xy} = 0$
 $\varepsilon_x = \frac{1}{E} \sigma_x$ $\varepsilon_y = \varepsilon_z = -v \frac{\sigma_x}{E}$ $\gamma_{xy} = 0$
 $\sigma_x = E\varepsilon_x$ $\sigma_y = \sigma_z = \tau_{xy} = 0$
- Pure Shear $\sigma_x = 0, \sigma_y = 0, \tau_{xy} \neq 0$
 $\varepsilon_x = \varepsilon_y = \varepsilon_z = 0$ $\gamma_{xy} = \frac{\tau_{xy}}{G}$
 $\sigma_x = \sigma_y = \sigma_z = 0$ $\tau_{xy} = G\gamma_{xy}$

Hooke's Law for Plane Stress Volume Change

SEOUL NATIONAL UNIVERSITY

- When a solid undergoes strains, its volume will change
 - The original volume
 - Final volume after deformation $V_1 = (a + a\varepsilon_x)(b + b\varepsilon_y)(c + c\varepsilon_z) = abc(1 + \varepsilon_x)(1 + \varepsilon_y)(1 + \varepsilon_z)$ = $V_0(1 + \varepsilon_x)(1 + \varepsilon_y)(1 + \varepsilon_z)$
 - Upon expanding the terms in the right hand side $V_1 = V_0(1 + \varepsilon_x + \varepsilon_y + \varepsilon_z + \varepsilon_x\varepsilon_y + \varepsilon_x\varepsilon_z + \varepsilon_y\varepsilon_z + \varepsilon_x\varepsilon_y\varepsilon_z)$
 - With small strains $V_1 = V_0(1 + \varepsilon_x + \varepsilon_y + \varepsilon_z)$
 - Volume change $\Delta V = V_1 = V_0(\varepsilon_x + \varepsilon_y + \varepsilon_z)$ ର Does not have to be linearly elastic ର General 3D (not confined to 2D) ର Shear strain produce no change in volume

 $V_0 = abc$

Hooke's Law for Plane Stress Volume Change

SEOUL NATIONAL UNIVERSITY

• The unit volume change (= dilatation).

$$e = \frac{\Delta V}{V_0} = \varepsilon_x + \varepsilon_y + \varepsilon_z$$

- (+) expansion, (-) contraction

Unit volume change in terms of stress

ম্বplane stress or biaxial

$$e = \frac{\Delta V}{V_0} = \frac{1 - 2\nu}{E} (\sigma_x + \sigma_y)$$

ন্ধuniaxial

$$e = \frac{\Delta V}{V_0} = \frac{\sigma_x}{E} (1 - 2\nu)$$

 $\varepsilon_{x} = \frac{1}{E} (\sigma_{x} - \nu \sigma_{y})$ $\varepsilon_{y} = \frac{1}{E} (\sigma_{y} - \nu \sigma_{x})$ $\varepsilon_{z} = -\frac{\nu}{E} (\sigma_{x} + \sigma_{y})$

Hooke's Law for Plane Stress Strain-Energy Density in Plane Stress

SEOUL NATIONAL UNIVERSITY

- Strain Energy Density, u, in Plane Stress

 - Strain energy density in terms of stresses alone

$$u = \frac{1}{2E} (\sigma_{x}^{2} + \sigma_{y}^{2} - 2\nu\sigma_{x}\sigma_{y}) + \frac{\tau_{xy}^{2}}{2G}$$

- Strain energy density in terms of strains alone

$$u = \frac{E}{2(1-v^2)} (\varepsilon_x^2 + \varepsilon_y^2 + 2v\varepsilon_x\varepsilon_y) + \frac{G\gamma_{xy}^2}{2}$$

- Strain energy density in uniaxial stress
- Strain energy density in pure shear

$$= \frac{\sigma_x^2}{2E} \qquad u = \frac{E\varepsilon_x^2}{2}$$
$$= \frac{\tau_{xy}^2}{2G} \qquad u = \frac{G\gamma_{xy}^2}{2}$$

U

U

Triaxial Stress

SEOUL NATIONAL UNIVERSITY

 $\Lambda \sigma_v$

 $\sigma_{\rm v}$

 σ_{τ}

- Triaxial stress:
 - three normal stresses in three mutually perpendicular direction
 - Shear stress exist in inclined section
- Maximum shear stress

in triaxial stress

Triaxial Stress

- Mohr's Circles for 3D
 - Rotation about z-axis (A)
 - Rotation about x-axis (B)
 - Rotation about y-axis (C)
 - Rotation about skew axis (shaded area)
 Subject of more advanced study

Triaxial Stress Hooke's Law for Triaxial Stress

SEOUL NATIONAL UNIVERSITY

 Strains in terms of Triaxial Stress

$$\varepsilon_{x} = \frac{\sigma_{x}}{E} - \frac{\nu}{E} (\sigma_{y} + \sigma_{z})$$
$$\varepsilon_{y} = \frac{\sigma_{y}}{E} - \frac{\nu}{E} (\sigma_{z} + \sigma_{x})$$
$$\varepsilon_{z} = \frac{\sigma_{z}}{E} - \frac{\nu}{E} (\sigma_{x} + \sigma_{y})$$

$$\sigma_{x} = \frac{E}{(1+\nu)(1-2\nu)} \Big[(1-\nu)\varepsilon_{x} + \nu(\varepsilon_{y} + \varepsilon_{z}) \Big]$$

$$\sigma_{y} = \frac{E}{(1+\nu)(1-2\nu)} \Big[(1-\nu)\varepsilon_{y} + \nu(\varepsilon_{z}+\varepsilon_{x}) \Big]$$

$$\sigma_{z} = \frac{E}{(1+\nu)(1-2\nu)} \Big[(1-\nu)\varepsilon_{z} + \nu(\varepsilon_{x} + \varepsilon_{y}) \Big]$$

• Unit Volume Change

$$e = \frac{1 - 2\nu}{E} (\sigma_x + \sigma_y + \sigma_z)$$

Triaxial Stress Strain Energy Density

SEOUL NATIONAL UNIVERSITY

- Strain Energy Density, *U*, in Triaxial Stress (no shear stress) $u = \frac{1}{2}(\sigma_x \varepsilon_x + \sigma_y \varepsilon_y + \sigma_z \varepsilon_z)$
 - Strain Energy Density in terms of stresses

$$u = \frac{1}{2E} (\sigma_x^2 + \sigma_y^2 + \sigma_z^2) - \frac{v}{E} (\sigma_x \sigma_y + \sigma_x \sigma_z + \sigma_y \sigma_z)$$

– Strain Energy Density in terms of strains

$$u = \frac{E}{2(1+\nu)(1-2\nu)} \Big[(1-\nu)(\varepsilon_x^2 + \varepsilon_y^2 + \varepsilon_z^2) + 2\nu(\varepsilon_x \varepsilon_y + \varepsilon_x \varepsilon_z + \varepsilon_y \varepsilon_z) \Big]$$

Triaxial Stress τ Spherical Stress σ • Spherical Stress : Γ

- when three normal stresses are equal $\sigma_x = \sigma_y = \sigma_z = \sigma_0$
- Any plane cut through the element will be subjected to the same normal stress σ_0

Questions

Plane Strain (평면변형율)

SEOUL NATIONAL UNIVERSITY

- Strains
 - reference directions vs. inclined directions
 - Strain Transformation Equation \rightarrow similar to stress transformation equation

FIG. 7-30 Strain components ϵ_x , ϵ_y , and γ_{xy} in the *xy* plane (plane strain)

Plane Strain (평면변형율) Plane strain versus plane stress

Plane Strain (평면변형율) Transformation equation for plane strain

Plane Strain (평면변형율) Transformation equation for plane strain

SEOUL NATIONAL UNIVERSITY

 $\Delta d = \varepsilon_x dx \cos \theta + \varepsilon_y dy \sin \theta + \gamma_{xy} dy \cos \theta$

$$\varepsilon_{x1} = \frac{\Delta d}{ds} = \varepsilon_x \frac{dx}{ds} \cos \theta + \varepsilon_y \frac{ds}{ds} \sin \theta + \gamma_{xy} \frac{dy}{ds} \cos \theta$$

$$\varepsilon_{x1} = \varepsilon_x \cos^2 \theta + \varepsilon_y \sin^2 \theta + \gamma_{xy} \cos \theta \sin \theta$$
Plane Strain (평면변형율) Transformation equation for plane strain

SEOUL NATIONAL UNIVERSITY

- Shear strain γ_{x1y1} :
 - Decrease in angle between lines that were initially along the x1 and y1 axes.

$$\gamma_{x1y1} = \alpha + \beta$$

$$\frac{\gamma_{x_1y_1}}{2} = -(\varepsilon_x - \varepsilon_y)\sin\theta\cos\theta + \frac{\gamma_{xy}}{2}(\cos^2\theta - \sin^2\theta)$$

FIG. 7-34 Shear strain $\gamma_{x_1y_1}$ associated with the x_1y_1 axes

Plane Strain (평면변형율) Transformation equation for plane strain

SEOUL NATIONAL UNIVERSITY

• Transformation equations for plane strain

$$\varepsilon_{x_{1}} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} + \frac{\varepsilon_{x} - \varepsilon_{y}}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta$$

$$\frac{\gamma_{x_{1}y_{1}}}{2} = -\frac{\varepsilon_{x} - \varepsilon_{y}}{2} \sin 2\theta + \frac{\gamma_{xy}}{2} \cos 2\theta$$
TABLE THE T
PLANE PLANE

$$\varepsilon_{x_1} + \varepsilon_{y_1} = \varepsilon_x + \varepsilon_y$$

TABLE 7-1 CORRESPONDING VARIABLES INTHE TRANSFORMATION EQUATIONS FORPLANE STRESS (EQS. 7-4a AND b) ANDPLANE STRAIN (EQS. 7-71a AND b)

Stresses	Strains
$\sigma_{\!x}$	ϵ_x
σ_{y}	ϵ_y
$ au_{xy}$	$\gamma_{xy}/2$
σ_{x_1}	ϵ_{x_1}
$ au_{x_1y_1}$	$\gamma_{x_1y_1}/2$

Plane Strain (평면변형율) Transformation equation for plane strain

SEOUL NATIONAL UNIVERSITY

– Principal Angles

$$\tan 2\theta_p = \frac{\gamma_{xy}}{\varepsilon_x - \varepsilon_y}$$

- Principal Strains

$$\varepsilon_{1,2} = \frac{\varepsilon_x + \varepsilon_y}{2} \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2}$$

Maximum Shear Strain (and normal strains for the maximum shear)

$$\frac{\gamma_{\text{max}}}{2} = \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2}$$

Plane Strain (평면변형율) Mohr's Circle

SEOUL NATIONAL UNIVERSITY

• Mohr's Circle for plane strain ← same as plane stress

TABLE 7-1 CORRESPONDING VARIABLES IN THE TRANSFORMATION EQUATIONS FOR PLANE STRESS (EQS. 7-4a AND b) AND PLANE STRAIN (EQS. 7-71a AND b)

Stresses	Strains
σ_{x}	ϵ_{x}
σ_y	ϵ_y
$ au_{xy}$	$\gamma_{xy}/2$
σ_{x_1}	ϵ_{x_1}
$ au_{x_1y_1}$	$\gamma_{x_1y_1}/2$

Plane Strain (평면변형율) Strain Measurements

SEOUL NATIONAL UNIVERSITY

- Strain gages
 - A device for measuring <u>normal strains</u> on the surface of a stressed object (e.g., rock)
 - Electrical resistance of the wire is altered when it stretches or shortens → converted to strain
 - Sensitive: can measure 1x10⁻⁶
 - Three measurement \rightarrow strains in any direction
- Strain rosette
 - A group of three gages arranged in a particular direction

Plane Strain (평면변형율) Cal of Stresses from the strains

SEOUL NATIONAL UNIVERSITY

- Strain transformation equation derived solely from the consideration of geometry.
 - No need to know material properties
- Determining Stresses from Strain
 - Apply Hooke's law \rightarrow need to know material properties

Plane Strain (평면변형율) Example 7-8

SEOUL NATIONAL UNIVERSITY

• A strain rosette is bonded to the surface of rock before it is loaded. With normal strains ϵ_a , ϵ_b and ϵ_c how to obtain ϵ_{x1} , ϵ_{y1} and γ_{x1y1} ?

FIG. 7-38 Example 7-8. (a) 45° strain rosette, and (b) element oriented at an angle θ to the *xy* axes

Chapter 7. Analysis of Stress & Strain Outline

SEOUL NATIONAL UNIVERSITY

- Introduction
- Plane Stress
- Principal Stresses and Maximum Shear Stresses
- Mohr's Circle for Plane Stress
- Hooke's Law for Plane Stress
- Triaxial Stress
- Plane Strain