
Ranking with Indexes
406.424 Internet Applications

Jonghun Park

jonghun@snu.ac.kr

Dept. of Industrial Eng.

Seoul National University

9/1/2010

mailto:jonghun@snu.ac.kr

indexes and ranking

 data structures designed to make search faster

 most common data structure is inverted index

- general name for a class of structures

- “inverted” because documents are associated with words,

rather than words with documents

 text search engines use a particular form of search:

ranking

- documents are retrieved in sorted order according to a score

computing using the document representation, the query, and a

ranking algorithm

 what is a reasonable abstract model for ranking?

abstract model of ranking

more concrete model

inverted index

 each index term is associated with an inverted list

- contains lists of documents, or lists of word occurrences in

documents, and other information

- each entry is called a posting

- the part of the posting that refers to a specific document or

location is called a pointer

- each document in the collection is given a unique number

- lists are usually document-ordered (sorted by document number)

example “Collection”

simple inverted index

inverted index with word counts

 supports better

ranking algorithms

inverted index with word positions

 supports

proximity

matches

proximity matches

 matching phrases or words within a window

- e.g., "tropical fish", or “find tropical within 5 words of

fish”

 word positions in inverted lists make these types of query

features efficient

- e.g.,

fields and extents

 document structure is useful in search

- field restrictions

 e.g., date, from:, etc.

- some fields more important

 e.g., title

 options:

- separate inverted lists for each field type

- add information about fields to postings

- use extent lists

extent lists

 an extent is a contiguous region of a document

- represent extents using word positions

- inverted list records all extents for a given field type

- e.g., (5,9) if title of a book started on the 5th word and ended just

before the 9th word

extent list

other issues

 precomputed scores in inverted list

- e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is total feature

value (e.g., TF*IDF) for “fish” in document 1

- improves speed but reduces flexibility

 score-ordered lists

- query processing engine can focus only on the top part of each

inverted list, where the highest-scoring documents are recorded

- very efficient for single-word queries

compression

 inverted lists are very large

- much higher if n-grams are indexed

 compression of indexes saves disk and/or memory space

- typically have to decompress lists to use them

- best compression techniques have good compression ratios and

are easy to decompress

 lossless compression – no information lost

 basic idea: common data elements use short codes

while uncommon data elements use longer codes

compression example

 ambiguous encoding

- given 0, 1, 0, 2, 0, 3, 0

- a possible encoding: 00 01 00 10 00 11 00

- another encoding by encoding 0 using a single 0

 0 01 0 10 0 11 0: only 10 bits but ambiguous (since the spaces are not

stored)

 it can also be interpreted as 0 01 01 0 0 11 0

- an unambiguous encoding

delta encoding

 word count data is good candidate for compression

- many small numbers and few larger numbers

- encode small numbers with small codes

 document numbers are less predictable

- but differences between numbers in an ordered list are smaller

and more predictable

 delta encoding:

- encoding differences between document numbers (d-gaps)

delta encoding

• given inverted list (containing doc numbers)

• differences between adjacent numbers

• differences for a high-frequency word are easier to compress, e.g.,

• differences for a low-frequency word are large, e.g.,

bit-aligned Codes

 breaks between encoded numbers can occur after any bit

position

 unary code

- encode k by k 1s followed by 0

- 0 at end makes code unambiguous

unary and binary Codes

 unary is very efficient for small numbers such as 0 and 1,

but quickly becomes very expensive

- 1023 can be represented in 10 binary bits, but requires 1024 bits

in unary

 binary is more efficient for large numbers, but it may be

ambiguous

Elias-γ code

 combines the strengths of unary and binary codes

 to encode a number k, compute
- kd = log2k -

- kr = k – 2⎣log2k⎦kd

 kd

- the number of binary digits needed to write k in binary form
minus 1

- encoded in unary

- tells us how many bits to expect

 kr

- the remaining binary digits after removing the leftmost binary
digit (which is 1) of k

 e.g., k = 3
- kd = 1, kr = 1

Elias-γ code examples

byte-aligned codes

 variable-length bit encodings can be a problem on

processors that process bytes

 v-byte is a popular byte-aligned code

- similar to Unicode UTF-8

- uses short codes for small numbers and longer codes for longer

numbers

 shortest v-byte code is 1 byte

 numbers are 1 to 4 bytes

- low seven bits of each byte contain numeric data in binary

- high bit is 1 in the last byte

v-byte encoding

compression example

 assume (document, count, [positions])

 consider inverted lists with positions:

 delta encode document numbers and positions:

- can make the number smaller

 compress using v-byte (without the brackets):

skipping

 search involves comparison of inverted lists of different

lengths

- can be very inefficient

- need to avoid reading all the information in the inverted list

- “skipping” ahead to check document numbers is much better

 skip pointers are additional data structure to support

skipping

need for skipping

 query: “galago AND animal”

- 300M docs containing animal, and 1M for galago

- inverted lists for “galago” and “animal” are in doc order

 a very simple algorithm

- dg: first doc number in the inverted list for “galago”

- da: first doc number in the inverted list for “animal”

- while there are still docs in the lists for “galago” and “animal”

 if dg < da, set dg to the next doc number in the “galago” list

 if dg > da, set da to the next doc number in the “animal” list

 if dg = da, the document da contains both “galago” and “animal”. move

both dg and da to the next doc in the inverted lists respectively

- very expensive

skip pointer

 better approach

- every time we find that dg > da, we skip ahead k docs in the

“animal” list to a new doc sa

- if sa < dg, we skip ahead by another k docs

- we do this until sa >= dg

 a skip pointer (d, p) contains a document number d and a

byte (or bit) position p

- means there is an inverted list posting that starts at position p,

and that the posting immediately before it is for document d

skip pointers
Inverted list

skip pointer

 example

- inverted list with document numbers, uncompressed

- d-gaps

- add some skip pointers

 e.g., (17, 3): doc number 17 is immediately before position 3

 e.g., find the doc number 80 in the list

- scan the list of skip pointers until we find (52, 12) and (89, 15)

- start decoding at position 12 in the d-gaps list

- we find 52 + 5 = 57 and 57 + 23 = 80

auxiliary structures

 inverted lists usually stored together in a single file for

efficiency

- inverted file

 additional directory structure: lexicon

- contains a lookup table from index terms to the byte offset of

the inverted list in the inverted file

- either hash table in memory or B-tree for larger vocabularies

 term statistics stored at start of inverted lists

 collection statistics stored in separate file

index construction

 simple, sequential in-memory indexer

- It: new inverted list

- result: a hash table of tokens and inverted lists

merging

 addresses limited memory problem
- build the inverted list structure until memory runs out

- then write the partial index to disk, start making a new one

- at the end of this process, the disk is filled with many partial indexes,
which are merged

 partial lists must be designed so they can be merged in small
pieces
- e.g., storing in alphabetical order

distributed indexing

 distributed processing driven by need to index and

analyze huge amounts of data (i.e., the web)

 large numbers of inexpensive servers used rather than

larger, more expensive machines

 MapReduce is a distributed programming tool designed

for indexing and analysis tasks

MapReduce

 distributed programming framework that focuses on data

placement and distribution

 mapper

- generally, transforms a list of items into another list of items of

the same length

 reducer

- transforms a list of items into a single item

- definitions not so strict in terms of number of outputs

 many mapper and reducer tasks on a cluster of machines

MapReduce

MapReduce

 basic process

- map stage which transforms data records into pairs, each with a

key and a value

 e.g., (word, document:position)

- shuffle uses a hash function so that all pairs with the same key

end up next to each other and on the same machine

- reduce stage processes records in batches, where all pairs with

the same key are processed at the same time

 idempotence of mapper and reducer provides fault

tolerance

- multiple operations on same input gives same output

indexing example

query processing

 document-at-a-time

- calculates complete scores for documents by processing all term

lists, one document at a time

 term-at-a-time

- accumulates scores for documents by processing term lists one at

a time

 Bbth approaches have optimization techniques that

significantly reduce time required to generate scores

document-at-a-Time

document-at-a-time

term-at-a-time

term-at-a-time

optimization techniques

 term-at-a-time uses more memory for accumulators, but

accesses disk more efficiently

 two classes of optimization

- read less data from inverted lists

 e.g., skip lists

 better for simple feature functions

- calculate scores for fewer documents

 e.g., conjunctive processing

 better for complex feature functions

conjunctive term-at-a-time:

works best when one of the

query terms is rare

conjunctive

document-at-a-time

threshold methods

 threshold methods use number of top-ranked documents
needed (k) to optimize query processing

- for most applications, k is small: 10 or 20

 for any query, there is a minimum score that each
document needs to reach before it can be shown to the
user

- score of the kth-highest scoring document

- gives threshold τ

- optimization methods estimate τ′ to ignore documents

 MaxScore method compares the maximum score that
remaining documents could have to τ′

- safe optimization in that ranking will be the same without
optimization

MaxScore example

 query: eucalyptus tree

 indexer computes μtree

- maximum score for any document containing just “tree”

 assume k =3, τ′ is lowest score after first three docs

containing “eucalyptus” and “tree”

 likely that τ ′ > μtree

- τ ′ is the score of a document that contains both query terms

 can safely skip over all gray postings

other approaches

 early termination of query processing

- simply ignore high-frequency word lists in term-at-a-time

 similar to using a stopword list

- ignore documents at end of lists in doc-at-a-time

- unsafe optimization

 list ordering

- order inverted lists by quality metric (e.g., PageRank) or by

partial score

- makes unsafe (and fast) optimizations more likely to produce

good documents

structured queries

 query language can support specification of complex

features

- similar to SQL for database systems

- query translator converts the user’s input into the structured

query representation

- Galago query language is the example used here

- e.g., Galago query:

 #od:I: the terms inside it need to appear next to each other in that order

evaluation tree for structured query

distributed evaluation

 basic process

- all queries sent to a director machine

- director then sends messages to many index servers

- each index server does some portion of the query processing

- director organizes the results and returns them to the user

 two main approaches

- document distribution

 by far the most popular

- term distribution

distributed evaluation

 document distribution

- each index server acts as a search engine for a small fraction of

the total collection

- director sends a copy of the query to each of the index servers,

each of which returns the top-k results

- results are merged into a single ranked list by the director

 collection statistics should be shared for effective ranking

- e.g., IDF

distributed evaluation

 term distribution

- single index is built for the whole cluster of machines

- each inverted list in that index is then assigned to one index

server

 e.g., “dog” by the 3rd server, “cat” by the 5th server

- one of the index servers is chosen to process the query

 usually the one holding the longest inverted list

- other index servers send information to that server

- final results sent to director

caching

 query distributions similar to Zipf

- about ½ each day are unique, but some are very popular

 caching can significantly improve effectiveness

- cache popular query results

- cache common inverted lists

 inverted list caching can help with unique queries

 cache must be refreshed to prevent stale data

