Reactor Numerical Analysis and Design 1st Semester of 2010

Lecture Note 6

Introduction to Nuclear Design

April 15, 2010

Prof. Joo Han-gyu Department of Nuclear Engineering

Contents

Nuclear Design Goals

Design Requirements

- Reactivity Requirements
- Safety Requirements
- Operating Margin

□ Means of Reactivity Control and Power Distributions

- Enrichment and Batch Size
- Burnable Absorber
- **Economics of Longer Cycles**
- **□Fuel Loading Schemes**
- **Depletion Analysis**
- **Design Based Reactivity Insertion Accidents**
- **General Design Criteria**

Goal

 Determine fuel composition, configuration, and in-core arrangement for safe and economical operation of a nuclear reactor

□ Objectives

- Meet Required Energy Production
 - Rated Power x Duration (e.g. 2775 Mw x 15 months x 3 Cycles)
- Meet Safety Requirements
 - Peak Power Limit, Minimum DNBR Limit, Negative MTC, Discharge Burnup and etc.

Maximize Operational Flexibility

- Sufficient Operating Margins
- Minimize Power Generation Cost
 - Higher Capacity Factor and Lower Fuel Cost

□Core should be kept critical for required period. (reactivity=0)

Reactivity: Degree of Off-Criticality of a Core

$$\rho = 1 - \frac{1}{k_{eff}}$$

	(>0, ,	SuperCriti	cal	(Increasin	g Power)				
ρ	= 0,	Critical		(Constant	Power)				
	< 0,	Subcritica	l	(Decreasing	Power)	, but	constant w	ith	source

• Unit

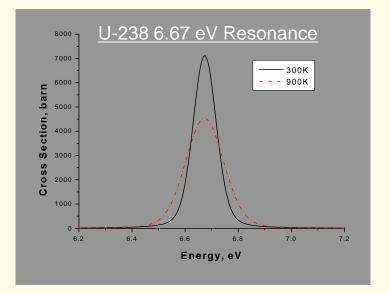
- % or pcm (per cent milli = 10^{-5})
- 1% Reactivity amounts to 1 month operation in a typical PWR

Factors Affecting Core Reactivity

- Initial Fuel Enrichment and Burnable Absorber Loading
- Core Thermal Condition (MTC and FTC, Power Defect)
- Neutron Leakage
- Fission Product (e.g. Xe) Buildup
- Fuel Burnup
- Boron Concentration and Control Rod Position

Fuel Temperature Effect

□ T_{F↑} ⇒ 원자 열운동 활발 ⇒ U-238, Pu-240 등 중핵종의 공명 흡수폭 및 흡수량 증가 (Doppler Broadening) ⇒ 반응도 감소


$$\alpha_{F} = \frac{\partial \rho}{\partial T_{F}} < 0$$

그 열궤환 효과 (Thermal Feedback)

- $\mathbf{T}\uparrow\Rightarrow\rho\downarrow\Rightarrow\mathbf{p}\downarrow\Rightarrow\mathbf{T}\downarrow$
- 내재적 안전성 보장
- □ 계수 크기: 약 -3 pcm/C

□ 핵연료 온도 결손

- 온도 변화 범위: 약 600C
- 약 1800 pcm = 1.8%

Moderator Temperature Effect

$\Box \ \mathbf{T}_{\mathbf{M}}\uparrow \ \Rightarrow \mathbf{D}_{\mathbf{M}}\downarrow$

- ・ 감속 효과 감소 ⇒ ρ↓
- 보론에 의한 흡수 감소 ⇒ ρ ↑

 $\alpha_{M} = \frac{\partial \rho}{\partial T_{M}} \begin{cases} < 0, & \text{usually} \\ > 0, & \text{in case of high boron concentrat ion} \end{cases}$

□ 붕산의 영향

- 붕산이 없으면 MTC 항상 음(-), 약 -60 pcm/C (내재적 안전성 보장 요건 충족)
- 붕산증가에 따라 점점 양의 방향으로 접근
- 주기초 고붕산 상황에서는 양(+)일 수도

□ 감속재 온도 결손

• 270 C * 30 pcm/C (평균) = 8100 pcm = 약 8%

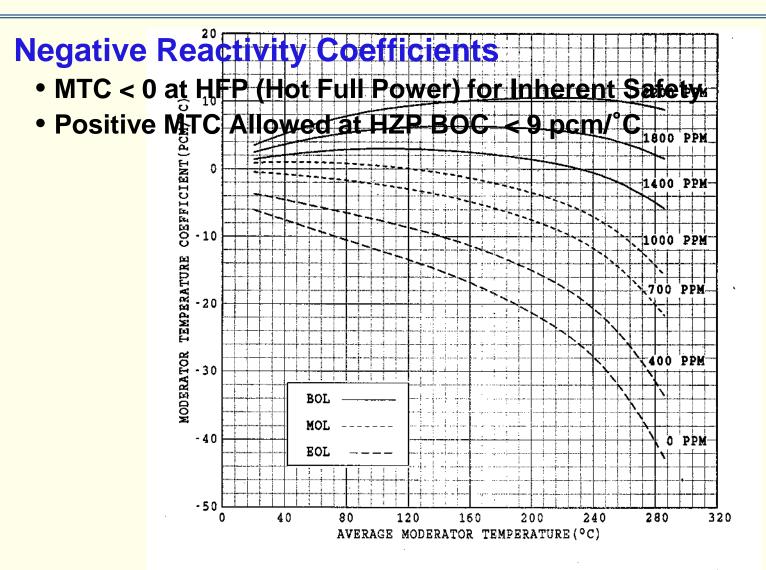
Required Reactivity by Component

Component	Approximate Value, %
CZP to HZP Temperature Defect	2 - 5
HZP to HFP Defect	1 - 2
Xenon Defect	2.5 - 3
Xenon Override	~ 1
Neutron Leakage	2.5 - 3.5
Fuel Depletion	5 - 8
Total	14 - 22.5

 \rightarrow Must be compensated by initial fuel reactivity

Safety Requirements

Peak Power Generation Rate Limit


- No Fuel Centerline Melting to Maintain Coolant Geometry
 - T_{CenterLine} < 2800°C (UO₂ Melting Point)
- No Metal-Water Interaction (Hydrogen Explosion) During LOCA
 - T_{clad} < 1200°C (~ 2200°F)
 - LOCA Limit on Linear Heat Generation Rate (LHGR)
 - 13.9 Kw/ft = 45.6 kw/m
 - Average LHGR 5.4 kw/ft (=2815x1000 kw/41772/12.5ft, 17.7 kw/m, 67 kw/rod)
 - Local Power Peaking Factor (**Fq**) Limit =13.9/5.4=2.58

DNB Limit

- No Departure from Nucleate Boiling under Anticipated Operating Occurrences (AOOs)
 - Axially Integrated Radial Power Peaking Factor (Fr) < 1.55

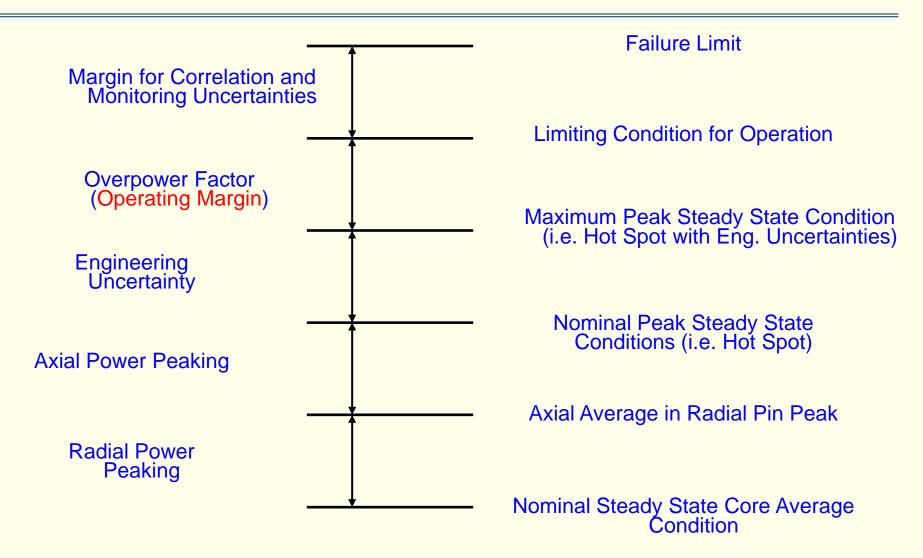
Safety Requirements - 2

Safety Requirements - 3

□ Fuel Discharge Burnup

- Fission Gas Production
- Pellet Swelling ← Lower Density of Fission Products
 - Cladding Deformation
 - Degradation of Cooling Capability
- Cladding Brittle and Vulnerable to Creep
- Discharge Burnup Limit of 50,000 MWD/T

□ Shutdown Margin


- Reactor Must be able to be Shutdown at Any Condition
- Reactivity Increase Due to Temperature Decrease After Shutdown
- Total Control Rod Worth > Temperature Defect
- Stuck Control Rod Should be Assumed in Total Control Rod Worth
 - Placing highly reactive fuel underneath control rod should be avoided
- Shutdown Margin > 1%
 - Total Available CR Worth Temperature Defect> 1%
 - To Assure No Return to Power in Steamline Break Accident

Ejected Rod Worth

SNURP

Operating Margin

SNURPL

Definition

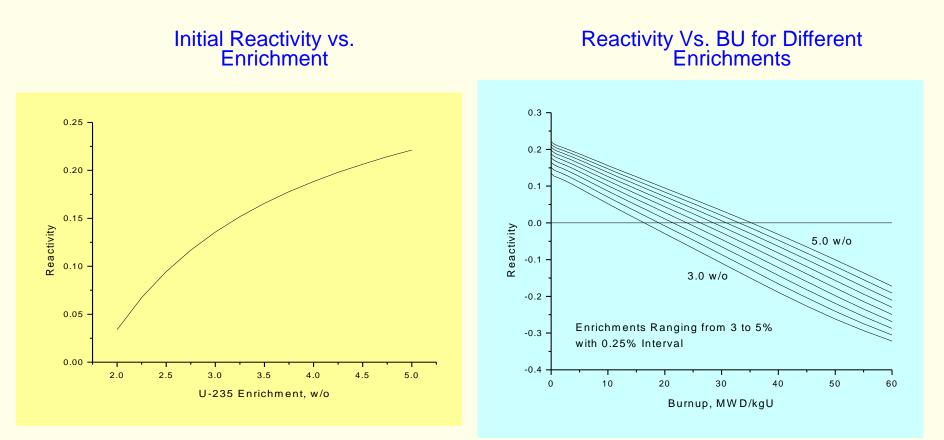
 Margin to limiting condition for operating from current Condition

□Ways to Increase

• Can be increased by reducing power peaking and achieving flatter power-to-flow ratio

□ Significance

- For normal operation, No economical benefit from higher operating margin
- In temporary upset conditions, Core can withstand perturbations without trip → Higher Capacity Factor


Means of Reactivity and Power Distribution Control

Number of Feed Assemblies or Batch Size

- Batch: Group of Assemblies to be Replaced at Each Cycle
- Batch Size for 177 FA Core
 - 4 Batch: 44 FAs
 - 3 Batch: 59 FAs
 - 2.5 Batch: 71 FAs
 - Practically 64 or 68 Fas (2.7 batch)
- **Enrichment of Fresh Fuel**
- **Type and Content of Burnable Absorber**
- **□**Fuel Rod and Assembly Arrangement
- **Soluble Boron and Control Rods**

Enrichment and Reactivity

Linear Reactivity Model

$$\rho(B,\varepsilon) = \rho_o(\varepsilon) - a(\varepsilon)B$$

SNURPL

Batch Size Effect on Cycle Length and Discharge Burnup

Core Reactivity by Linear Reactivity Model

$$\rho(B) = \frac{1}{n} \sum_{i=1}^{n} \rho(B_i) - \rho_{HFP}$$

- Assume One Enrichment Only
- D_{HFP} including all defects including neutron leakage

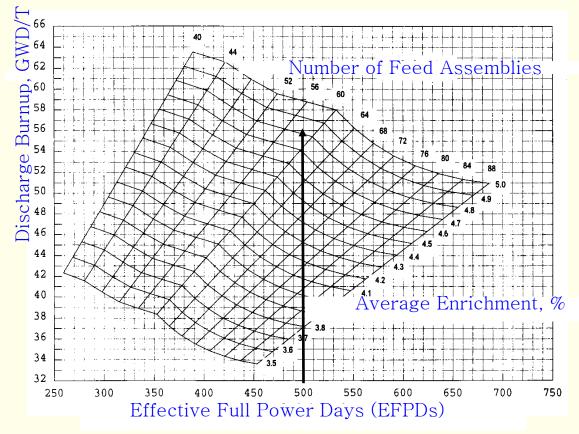
Cycle Length for Single Batch

$$\rho(B_1) = 0 = \rho_o - aB_1 - \rho_{HFP} \rightarrow B_1 = \frac{\rho_o - \rho_{HFP}}{a}$$

Cycle Length for 2 Batch Core $B_k^d = kB_k = \frac{2k}{k+1}B_1$

$$\rho(B_{2}) = \frac{1}{n} \left(\frac{n}{2} \rho_{1}(B_{2}) + \frac{n}{2} \rho_{1}(2B_{2}) \right) - \rho_{HFP} = \frac{1}{2} \left(\rho_{o} - aB_{2} + \rho_{o} - 2aB_{2} \right) - \rho_{HFP}$$

$$\rho(B_{2}) = 0 = \frac{1}{2} \left(2\rho_{o} - 3aB_{2} \right) - \rho_{HFP} \rightarrow B_{2} = \frac{2(\rho_{o} - \rho_{HFP})}{3a} = \frac{2}{3}B_{1}$$


In General, Discharge Burnup Increases with Batch Number $B = \frac{2}{R} = \frac{2}{R} = \frac{2k}{R} = \frac{2k}{R}$

$$B_{k} = \frac{2}{k+1}B_{1}, \qquad B_{k}^{d} = kB_{k} = \frac{2k}{k+1}B_{1}$$

Batch Size and Fuel Enrichment

For given cycle length (e.g. 12-Month or 18-Month), Various combinations of feed assemblies and enrichment are possible

Use of Higher Enrichment

- •Fewer Assemblies
- Less Fuel Cost
- ←Lower Cost for Assembly Structure ~45만불
 - ← Higher Discharge Burnup
 - Despite Higher Enrichment Cost

•Higher Power in Fresh Fuel → Hard to Meet Power Peaking Limit

Considerations on Batch Size and Cycle Length

More Batches (Small Batch Size)

- Higher Discharge Burnup → More economical in the aspect of fuel cost
- Short Cycle Length

Refueling Down Time Fraction Increasing with Short Cycle Length

Generation Cost Components

• 75, 10, 15% for Capital, Operation and Maintenance, Fuel Cost

Availability and Capacity Factor

$$D_{CL} = D_{OD} + D_{RD} + D_{TD}$$

$$\alpha = \frac{D_{OD}}{D_{CL}} (Availability Factor, 가 동율)$$

$$D_{EFPD} = \gamma D_{OD}$$

$$\xi = \frac{D_{_{EFPD}}}{D_{_{CL}}} = \gamma \alpha \, (Capacity \; Factor, \circ] 용 율)$$

- OD: Operating Days
- RD: Refueling Down Days
- TD: Temporary Down Days
- EFPD: Effective Full Power Days

CL: Cycle Length in Days

γ: Average Load Factor during Operation Days

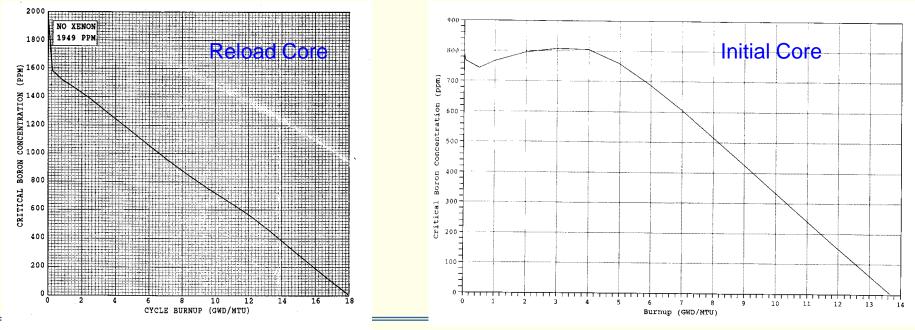
Better Spread of Capital Cost

- Based 95% Load Factor and 65 Days of Refueling Down Time
- Capacity Factor for 12 Month = 78%
- Capacity Factor for 18 Month = 84%
- Reduction in Generation Cost in Non-Fuel Cost
 - 75% * (1-0.78/0.84) = 5.4%

Fuel Cost Increase

- Less Discharge Burnup
- Higher Enrichment Cost
- 7.5% Increasing as Seen in the Next Table

Comparison of Generation Costs for 12 and 18 Month Cycles


Item	12-month cycle	18-month cycle		
Days of full power operation day	306	446		
Feed enrichment, w/o	3.900	4.014		
Number of feed fas(177 FAs in core)	44	68		
Capacity factor, %	79.04	83.44		
Cycle burnup, mwd/kgU	11.288	16.452		
Discharge burnup, mwd/kgU	45.408	42.823		
Electricity produced, kWh(e)	7.301×10 ⁹	1.064×10^{10}		
Fuel cost, milli-\$/kWh(e)	4.83	5.19 (1.075)*		
Fixed cost, milli-\$/kWh(e)	34.45	32.63 (0.947)		
Total cost, milli-\$/kWh(e)	39.29	37.83 (0.963)		

Excess Reactivity

- Surplus Reactivity Compensating for Fuel Depletion, Initially High but Decreasing with Burnup
- Need to Be Counterbalanced by Long Term Reactivity Control Means→ Boron or Burnable Absorber

Boron Let-down Curves

□ Functions

- Absorb neutrons and burn out as cycle burnup increases
- Suppress excess reactivity in initial phase of cycle
- Reduce boron concentration to relieve the positive MTC problem at BOC
- Control pin power distribution within assembly as well as inter-assembly

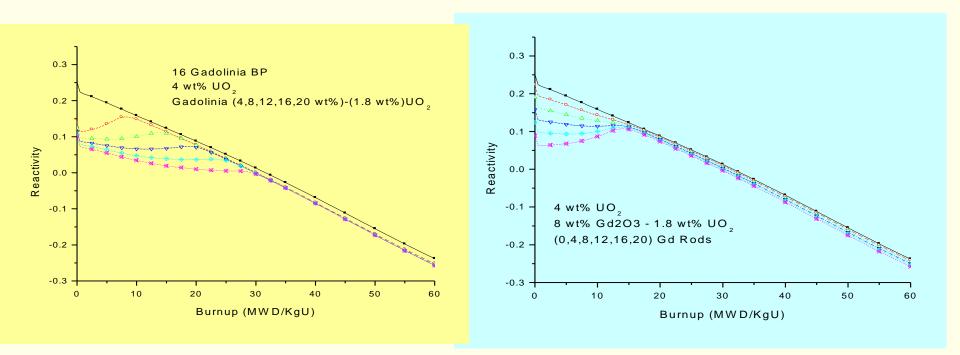
□ Materials

• Boron, Gadolinia (Gd₂O₃ +UO₂), Erbia

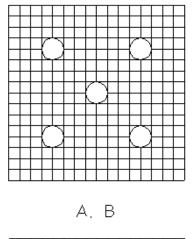
• GT Mount Separated BA

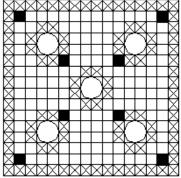
- Inserted into Guide Tubes
- WABA(Wetted Annular Burable Absorber), Pyrex (Borosillicate Glass)
- Position Limited Due to Control Rod Positions

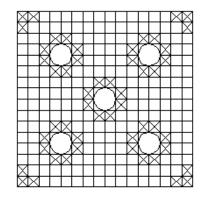
• Integral Burnable Absorber

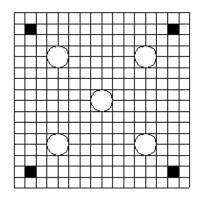

- Placed on Any Fuel Rod Positions
- Gadolinia, Erbia, Coated Boron (ZrB2+UO2) Mixed with Fuel
- Reduction of Fuel Rods Causing Higher Power Density in Other Fuel Rods
- Easier Intra-Assembly Power Distribution Control
- B4C
 - Separated BA Placeable in Fuel Position

SNURP

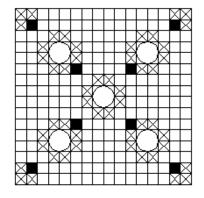

Control Parameters


- Absorber Concentration Controls Duration of Reactivity Holddown
- Number of BA Rods Controls Magnitude of Reactivity Holddown (due to Strong Self-shielding)





YGN-3/4 Initial Core Fuel Types



B1, C1, D1

- 🖸 WATER HOLE
 - LOWER ENRICHED
 - D NORMAL ENRICHED

SNURPL

■ GADOLINIA FUEL PIN

Problems of Single Batch

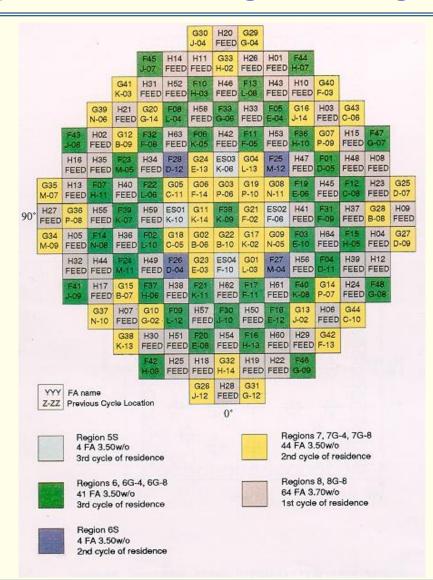
- Higher Peaking
- Low Discharge Burnup

Loading Pattern Search Goals

- Minimize Localized Power
 Peaking
- Maximize Cycle Length by Reducing Neutron Leakage
- Meet All the Safety Requirements
 - Fq
 - Fr
 - Negative MTC
 - Sufficient Shutdown Margin

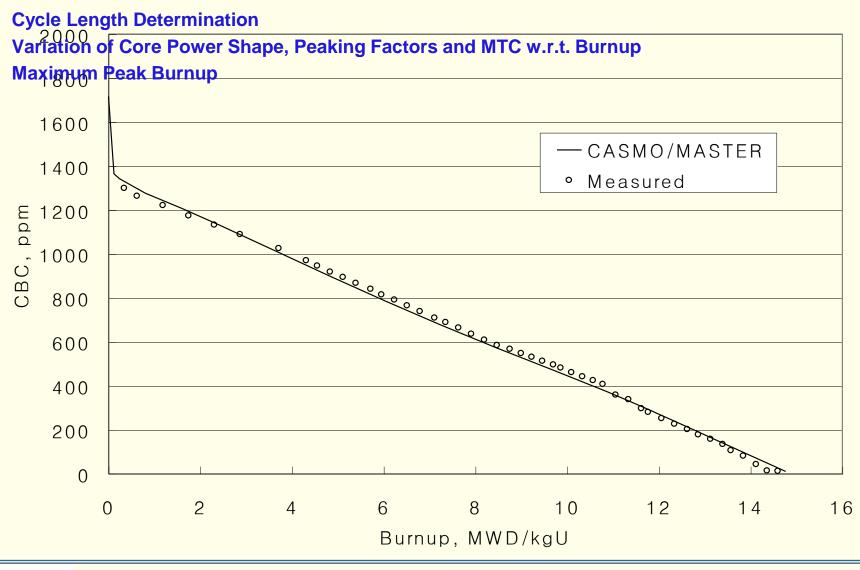
N F					1 В	2 C	3 D
N : Box F : Fuel			4 B	5 D	6 D2	7 C1	8 C1
		9 C	10 D1	11 D2	12 A	13 B2	14 B1
	15	16	17	18	19	20	21
	В	D1	C1	A	C1	A	B2
	22	23	24	25	26	27	28
	D	D2	A	C1	A	D2	A
29	30	31	32	33	34	35	36
В	D2	A	C1	A	C1	A	В2
37	38	39	40	41	42	43	44
C	C1	В2	A	D2	A	В	B1
45	46	47	48	49	50	51	52
D	C1	B1	B2	A	В2	B1	A

Out-In Loading Scheme

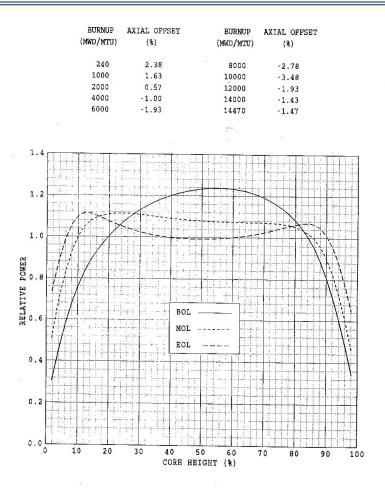

- Fresh fuel placed mostly at core periphery
- Easier control of interior power peak
- Involve large neutron leakage
 - Vessel fluence problem as well as poor neutron economy

Low-Leakage Loading Scheme

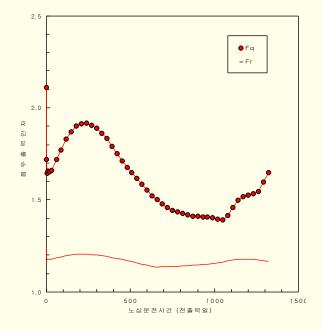
- Once or twice burned fuel placed in core periphery
- Fresh fuel placed in core interior with high BA loading to suppress reactivity of fresh fuels
- Difficult peaking control → require significant optimization effort in loading pattern design



Typical Low Leakage Loading Pattern


Depletion Analysis

SNURPL


Axial Power Shape Change During Burnup

RELATIVE AXIAL POWER DISTRIBUTION AT BOL, MOL AND EOL, HFP, ARO, EQUILIBRIUM XENON

Fq and Fr Variation vs. Burnup

Power and Burnup Distribution at BOC

Н	G	F	Е	D	с	В	A	
5 0.91 0.95 31330 <u>33490</u>	7G8 1.25 1.33 14440 15380	7G4 1.27 1.35 15080 16060	7 1.19 1.30 12810 15030	6 0.90 0.95 29170 30580	7 1.21 1.35 9100 13070	8G4 1.18 1.39 0 0	6 0.36 29860 30760	8
	7G4 1.28 1.35 15110 16110	$7 \\ 1.30 \\ 1.36 \\ 12900 \\ 15240$	6 0.99 1.05 25180 28560	8G4 1.28 1.40 0	6 0.94 1.01 26520 29600	8 1.17 1.39 0 0	6 0.31 0.63 28110 29310	9
	$7 \\ 1.30 \\ 1.36 \\ 12870 \\ 15220 $	7G4 1.28 1.36 14400 15370	7 1.27 1.39 11300 14780	6 0.94 0.99 27620 30080	8G8 1.21 1.33 0 0	8 0.94 1.29 0 0		10
	$\begin{array}{c} 6 \\ 1.00 \\ 1.06 \\ 25160 \\ 28530 \end{array}$	7 1.26 1.39 11300 14800	7G8 1.23 1.32 14460 15520	7 1.17 1.23 13890 15620	8 1.11 1.38 0 0	6 0.36 0.79 28930 30340		11
	8G4 1.28 1.40 0 0	6 0.94 0.99 27660 30140	7 1.17 1.23 13880 15590	8 1.13 <u>1.41</u> 0	6 0.40 0.80 29660 30730			12
	6 0.93 1.00 26830 29520	8G8 1.20 1.33 0 0	8 1.11 1.37 0 0	6 0.40 0.80 29740 30800			*	13
	8 1.17 1.39 0 0	8 0.93 1.28 0 0	6 0.36 0.77 28940 30070	- MAX. - FA BU	IVE FA PO RELATIVE	ROD POWER		14
	6 0.31 0.63 28070 29270	UNDE	RLINE IND:	ICATES MA	X. VALUE	IN CORE		15

	H	G	F	E	D	С	В	A				
	7G4 0.86 0.88 42510 43650	8 1.03 1.06 29130 32020	$ \begin{bmatrix} 8 \\ 1.07 \\ 1.10 \\ 30450 \\ 32750 \end{bmatrix} $	8 1.10 1.12 30510 32740	7 1.04 1.06 39090 42070	9G8 1.31 1.37 18830 20080	8G4 1.01 1.12 29610 30890	9 0.78 1.03 11200 15160	8			
1		8G8 1.03 1.06 31010 32370	8 1.10 1.14 28200 31610	8G4 1.10 1.16 32080 33000	9G8 1.33 1.38 18860 20210	$\begin{bmatrix} 7 \\ 1.00 \\ 1.03 \\ 40700 \\ 43760 \end{bmatrix}$	9 1.13 1.25 17040 19280	8 0.55 0.90 21070 23940	9			
		8 1.10 1.14 28170 31580	7 0.97 0.99 41250 43410	9G8 1.31 1.37 18540 19890	7G8 0.99 1.01 42820 44450	9G8 1.26 1.34 18000 19340	9 0.94 1.20 13800 18100		10			
		8G4 1.10 1.16 32110 33030	9G8 1.31 1.37 18540 19900	7G8 0.97 1.00 42890 44150	9G4 1.25 1.32 18110 19470	9 1.08 1.27 15730 19070	7 0.45 0.83 33890 35880		11			
		9G8 1.33 1.38 18870 20230	$\begin{array}{r} 7G4 \\ 0.99 \\ 1.01 \\ 43280 \\ 44460 \end{array}$	9G4 1.25 1.32 18110 19490	8G8 0.86 1.05 27300 30080	7 0.4(0.81 3418(3656(REGIO 7 7G4		32 5	POWER SHARING 0.73 0.96	ACCUM. BURNUP 37240 - 43120	CYCLE BURNUP 10180 13670
		7 1.00 1.03 40700 43770	9G8 1.26 1.34 18020 19370	9 1.08 1.27 15740 19090	7 0.46 0.81 34200 36580		7G8 8 8G4 8G8 9 9G4		8 28 12 8 28 8	0.98 0.93 1.07 0.94 1.01 1.25	42850 26940 31270 29150 14910 18110	13730 13790 15840 13860 14910 18110
		9 1.13 1.25 17040 19 2 90	9 0.94 1.20 13810 18110	7 0.45 0.83 33900 35870	-REGION -RELATIVE -MAX. RELA -FA BURNUI -MAX. ROD		9G8	4	28 14	1.30	18520	18520
		8 0.55 0.90 21090 23960	UNDERI	LINE INDIC.	ATES MAX. 1	VALUE IN C	ORE		15			

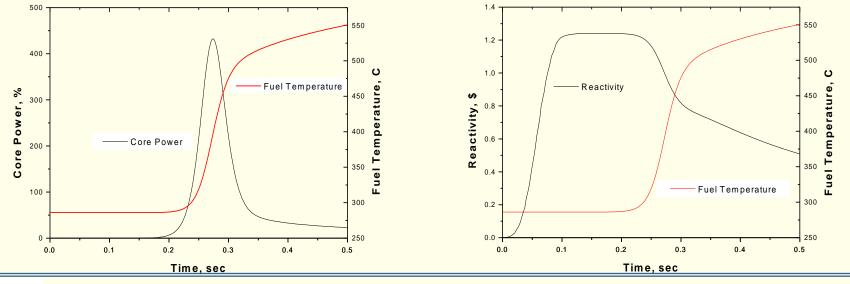
Design Bases Reactivity Insertion Accidents

□ Control Rod Ejection

- Sudden Rupture of CEDM Housing on Vessel Head
- Control Ejected Due to Pressure Difference Introducing Positive Reactivity into Core
- Ejected Rod Worth Depending on Inserted Position
 - Power Dependent Insertion Limit
- Rapid Burst of Power Mitigated Soon by Doppler Feedback
- Enthalpy Accumulation in Pellet < 280 cal/g

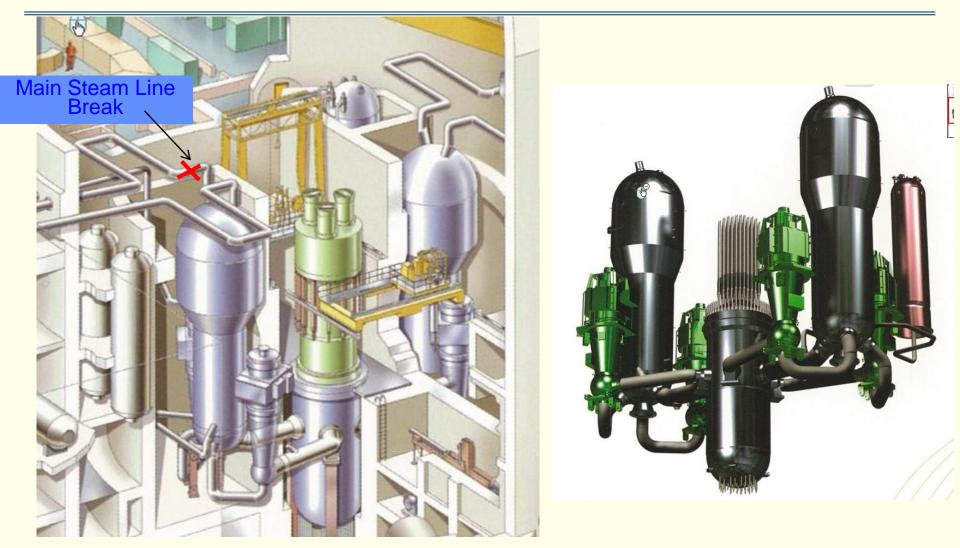
Steam Line Break

- Break in a Steam Line
- Rapid Evaporation Leading to Overcooling of Primary Coolant
- Positive Reactivity Insertion Due to Inlet Cooling
- Power Increase Followed by Shutdown with a Stuck Rod Assumed
- Subcritical Multiplication Potentially Causing Return-to-Power
- Shutdown Margin Important



HZP Rod Ejection and Doppler Effect

□ Inherent Safety by Doppler Effect


Control Rod Ejection Ejection Accident

- Initially Critical at ~0 Power (10⁻⁴% Nominal)
- Control Rod Ejection in 0.1 sec \rightarrow Positive Reactivity (1.2\$) Insertion
- Power Increase Exponentially → Fuel Temperature Increase
- Negative Temperature Feedback
- Autonomous Power Reduction

Nuclear Steam Supply System (OPR100)

MSLB Progress Scenario – 1/2

□ Break in One of the Main Steam Lines (Four or More)

- Leak of High Pressure Steam Through the Break (Critical Flow)
- Depressurization of SG and Rapid Evaporation
- Cool-down of Primary Coolant Causing Depressurization of Primary Loop
 - Initially Coolant Density Decrease in the Core
 - Core Power Decrease due to Less Moderation
- □ Transport of Chilled Coolant to Core
 - Core Reactivity Increase Due to Negative MTC
 - Core Power Increase

□ Overpower or Low Pressure Trip

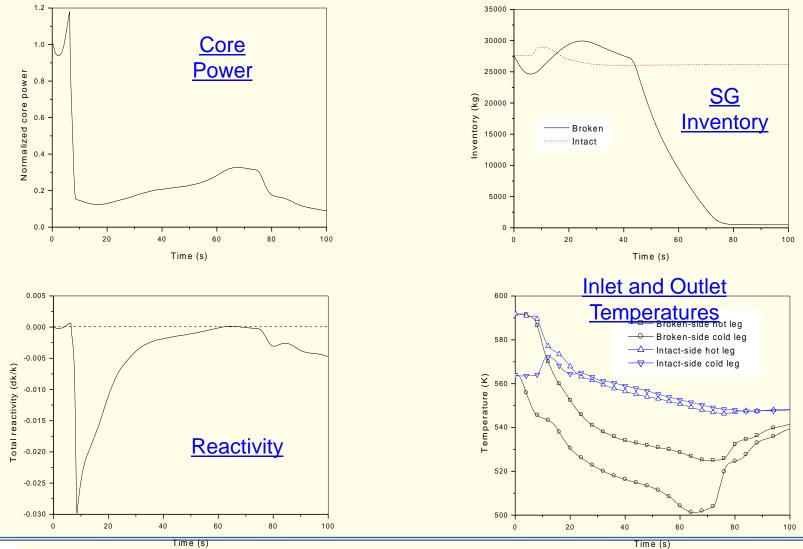
- Control Rod Inserted, but with One Control Rod Stuck Out
- Core Power Decrease to Shutdown Level
- Turbine Stop Valve Close
- Feedwater Block Valve Close

MSLB Progress Scenario – 2/2

□Continued Evaporation of Secondary Coolant and Overcooling of Primary Coolant in one Loop

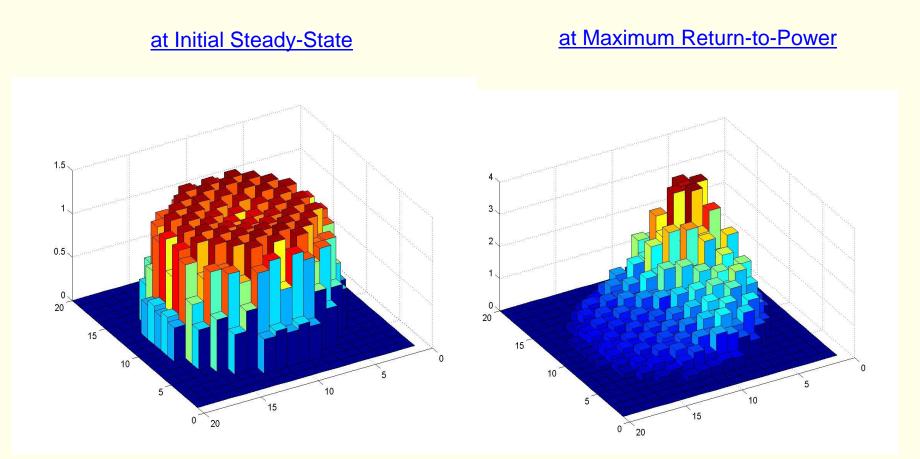
Asymmetric Flow Inlet Flow

Continued Core Reactivity Increase

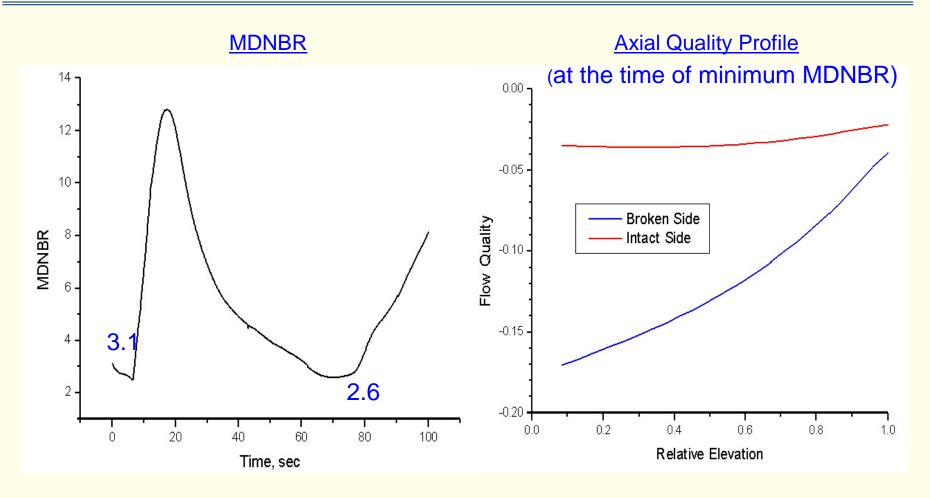

- Subcritical Neutron Multiplication
- Core Power Increase
- Possibility of Return-to-Critical or Return-to-Power

Dry-out of Feedwater in Broken Side SG

- No Further Decrease in Coolant Temperature
- Core Power Decreases due to Negative Temperature Coefficients



Steam Line Break Accident Progress

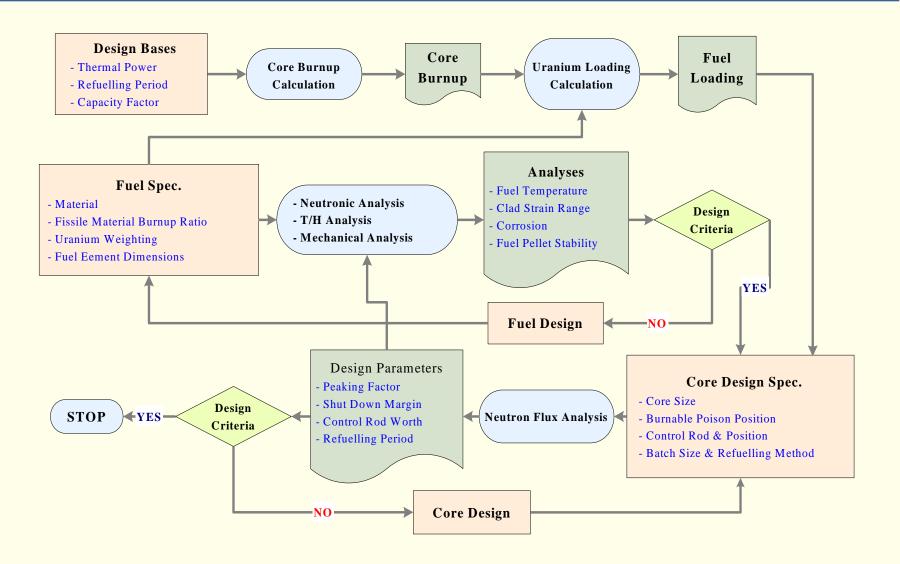

Core Power Shape

Minimum DNBR Behavior during MSLB

• DNB is not limiting because of large inlet subcooling.

Nuclear Design Considerations

- Economical Required Energy Production with Proper Fuel Loading
 - Enrichment and Amount of Fresh Fuels
 - Suitable Use of Burnable Absorbers
 - Elaborated Arrangement of Fresh and Burned Fuels in Core (Low Leakage Loading Pattern)


Satisfying Safety Requirements

- Fq and Fr Limits for Peak Cladding Temperature and Minimum DNB
- Peak Discharge Burnup
- Shutdown Margin (SLB)
- Ejected Rod Worth (Rod Ejection)
- Operating Margin
 - Peaking as low as Possible
- Longer Cycle for Better Economics in Generation Cost

SNURP

Overall Design Flow

SNURPL

Reactor Design (Criterion 10)

• Fuel design limits not exceeded during normal operation including anticipated operational occurrences (AOOs)

Fuel Design Limits (FDL)

- Fuel Melting Temperature (~5000°F or ~2700°C)
- Peak Cladding Temperature (2200°F or ~1200°C)
- Minimum DNBR (~1.3)
- Maximum Discharge Burnup (~50000 MWD/T)
- Maximum Deposited Energy (~280 cal/g)
- Cladding Oxidation (< 17% of the Cladding Thickness)

General Design Criteria (10CFR50 Appendix A)

□ Reactor Inherent Protection (Criterion 11)

- Inherent nuclear feedback to compensate for a rapid increase in reactivity
 - Negative Fuel Temperature Coefficient (FTC)
 - Negative Moderator Temperature Coefficient (MTC)
- □ Suppression of Reactor Power Oscillation (Criterion 12)
 - Power oscillation detected and suppressed by proper means
- □ Instrumentation and Control (Criterion 13)
 - Monitor variables and systems over their anticipated ranges for normal operation, for AOOs, and for accident conditions.
 - Appropriate controls provided to maintain these variables and systems within prescribed operating ranges
- □ Protection System Functions (Criterion 20)
 - Automatically initiated reactivity control system
 - Sense accident condition and initiate safety systems

SNURP

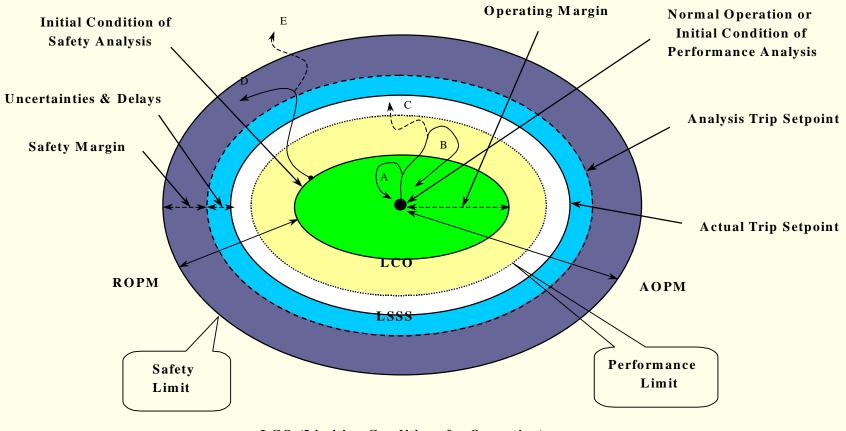
Protection System Reliability and Testability (Criterion 21)

- Redundancy and independence of the protection system
- No single failure resulting in loss of protection function
- Protection System Requirement for Reactivity Control Malfunction (Criterion 25)
 - FDL not exceeded for any single malfunction of the reactivity control system
 - Control rod withdrawal

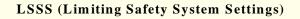
General Design Criteria (10CFR50 Appendix A)

Reactivity Control System Redundancy and Capability (Criterion 26)

- Two independence reactivity control system
- Use of control rods essential
- Appropriate margin for malfunctions such as stuck rods
- The second system controlling slow reactivity changes occurring normal operation
- Hold the reactor subcritical under cold condition
 - Subcriticality during Refueling (k<0.95)


□ Reactivity Limits (Criterion 28)

- Reactivity control system having appropriate limits on the potential amount and rate of reactivity increase
- Rod ejection, drop, steam line rupture, and cold water addition
- Maximum CEA Speed
- Not too much Negative MTC (SLB Consideration)



SNURP

Operating Space

LCO (Limiting Conditions for Operation)

