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Statistical Nature of Neutron Reaction

e Macroscopic Cross section
X.? Probability of reaction for a neutron traveling unit distance
dn = —nX dx
n(x) = n,e " (e_z‘x - survival probability after traveling x)
e Probability to react within unit distance after traveling x

53,51

p(x)=e ™" .3

t
e Mean free path

© © B B % © 1
I Xp(x)dxzj X-e Z‘Xthx=M+J' e " ¥dx = —
0 0 0 0 2,

e In core, collision probability

p= |5(F, E)dVdE : probability for a neutron born somewhere in the core

to have a collision around F, E with dV, dE (phase space)

(p<1)
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Statistical Nature of Neutron Reaction

e Number of collision for N neutrons born
— Expected value? =N -p

— Expected variance ?

e for k collisions out of N neutrons, possible number of occurrences

N —k

n(k,N)=C,p"(1-p)
= a,, of (p+q)N : coeff of the i-th order term (q=1- p)

= probability for k neutrons (out of N neutrons) to have collisions

— Expected value of k

N

> [kenk,N) =3 [k-yCyp'a™ ™ |2
k=0

k=0
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Moment Generating Function for PDF

e The moment-generating function of a random variable X is

— If X has a continuous probability density function p(x) , then the MGF is given by

M (t) :jw e p(x)dx > M, (t) = E(e%)
— PDF : Probability

M () = jw xe®p(x)dx -  E(X)=M,(0)= Iixp(x)dx Density

—00

Function

M ™ (1) :Iw Xe“p()dx > E(X")=M{(0)= Iw X" p(x)dx

— If X has a discrete probability density function p(x) , then the MGF is given by

M, 0= e"p(x)

k=0
M'X(t)=zxe“p(x) - E(X)=M}(0)=> xp(x)
i=0 i=0
M;(t):sze‘xp(x) — E(x2)=|v|;(0)=zx2p(x)
i=0 i=0
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Moment Generating Function for PDF

e Expected value of k using MGF

E(k)=M(0)=Y k p(k)

i=0

NCk(pet)qu—k =(pet+q)N

N N
k k -k
M )=>e" Cpq" " =
k=0 k=0
N -1

< M}Q(t):N(petnLq) . pe'

~ M (0)=N(p+q)" "p=Np

- E(k)=Np
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Moment Generating Function for PDF

e Expected variance of k using MGF

ZN“[(k—k_)zn(k,N)} Z[(k — 2Kk +k “)n (k,N)}

0

2
O

Z

|(
N |
=S [k (N ) ] - 203 [k (K, N)]+ K23 [7 (kN 'L

k=0

—k® -2k -k +k°

:kz_k_z

N-1

N
M ()=(pe'+q) —> M, (t)=N(pe'+q) -pe
t N-2 2 2t t N-1 t
{Ml’g(t)N(Nl)(pe +q) .p’e +N(pe +q) . pe
My (0)=N(N-1)p”+ Np

2 2
c"=M;(0)-|M /(0
« (0) =M (0)] —>q~1 forp<<l1
=N(N-1)p?+Np-N?p?

— _ ,{} / 1
Np(l p) — Relative standard deviation: ar(k Np \/q_ f
~.Var (k)= Npq «f vN
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Estimation of p

e Estimation of p

Since p is unknown, let's find p by experiment .Ai

Repeated Simulation with n neutrons/cycle

— LetN =n-C (where C is the number of cycles)

1 : L
= ) 1 if collision in phase space
Pi n Z Pi Py = (i—cycle, j—neutron)
=1 0 otherwise
1 C
p= —Z p, — C -1 for sample variance because of reduced degree of freedom
C “
=1 . due to the use in the sample mean. < Two data — one deviation.
O-SZ = ﬁz ( P, — 5)2 (conservative estimation of the real standard dev of the population)
T =
9/ — o (p;) _ _
o.(p)= - : Expected Variance of p ° e
6 e
C ) ° ° ° L
Z ( pi - B)
o*(p)= =
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Central Limit Theorem

e the average of a large number of independent and identically-distributed random variables
will be approximately normally distributed (i.e., following a Gaussian distribution)

if the random variables have a finite variance

- Letx,, X,, X;, ... be a set of n independent and identically distributed random variables

3

. - . 2
having finite values of mean x4 and variance ¢~ > 0.

— Cetral limit theorem states that
as the sample size n increases,

the distribution of the sample average approaches the normal distribution

2
: : o . : _ .
with a mean x and variance — irrespective of the shape of the original distribution.

n
T T 10 T
1w —
j b —
l; o; oy 5f —
j —
0 0 ' 0 |
] 05 1 ] 0.5 1 0 0.5 1
] E ]
MonMorrmal Distribotion of X MonMormal Distribution of = ManMormal Distribution of X
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PDF, CDF and Golden Rule

e PDF : Probability Density Function p(x)dx : probability

e CDF : Cumulative Distribution Function I f (x')dx'

1.0+ 1.0 7
0.8+ 0.8-
206 _QGZO.G
g =
S 0.4+ 2 0.4
a a
0.2 0.2
Total Area=1
0 0 T T T 1 00 T T T 1
1 2 3 4 1 2 3 4
Case Case
PDF CDF

e Golden Rule
With a CDF given, an event can be picked by a random number &.
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Probability of Collision at x with two regions

_PDF  A:p(x)=%,e

B:p(x)=e "z e (S=x-2)
s —sz(l)dl

_ aZpd, —Zgs _ 0
=8 e ZB—e ZB

- CDF
P(x)= IaZAeEA'dI - eZAaJSZBeZB'dI
0 0

- : ls,a
1-e >~ , X<a o 1—e[™*%

B L(l—e_z“a)+e_zAa(l—e_zBs), X > a : : X

a X

Length of Travel to first collision for a random number &

— Probability of collision within x
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MC Simulation of Neutron Migration in 2D with MG Xsec

Problem Geometry
* 2D core with assembly-wise Xsec
- No heterogeneous configuration within Assembly
- Constant xsec over each FA
e Subdivision of each assembly into cells
- Flux averaged over each cell

* Neutrons are moving in 3D space, but axially invariant neutron

behavior ;
6_: 0> o(Xx,y,2,) =p(x,y,z,) forany z, and z,.
4

e Radial BC can be either reflective or vacuum

Cross Sections

* Multigroup macroscoic cross sections given with scattering
matrices

* Scattering is assumed to be isotropic

X, =X, =——when using diffusion solver data
3D
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Things to Consider in Simulating Stochastic Events

Occurring a Neutron Flight

Characterization of a neutron
* Position (X,y,2)
* Moving direction (a,0)or(Q,,Q ,Q,)
* Energy (9)
* Weight (w)

Position of collision in space
* How long to move from the current position?

Type of interaction
* absorption, scattering, fission

Scattering mechanism

* Deflected angle after scattering
* Energy after scattering

Fission neutrons emitted

* Number
* Location : Source point in the next simulation
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Shooting a neutron and first move

Get the position of i —th fission source neutron from the storage
Determine the energy group of emission using y,

Determine the angle of emission assuming isotropic emisssion

- using the angle pickup scheme on the next slide

Determine the first travel distance

— determine the initial cell number
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Selection of Angle

Q+Q,+Q; =1 QZTZ\
Q =sind-cosa /
Q, =sinf sina 9 .
_ ! Y
Q, =cosd /4 — %
a | y
O
Select @ : 0~ 27 a=¢x2n (0<E<1)
X
Select 8 : 0~ 7« 4
p(@)do = Csingd o
" p(0)d0 =C [ singde = 2C > C = = 1 N
J, pe)do=C] sinedo =2¢ > C = 10
F 1o .
0 1 1 75 =["singde X
CDF :P(0) = [ p(6)d0'=—(1-cos0) = =(1-Q,)=¢ N 2h
0 2 2 05 %(1_92)
Q =1-2¢ (0<&<1) 0z
i c c A c e
sin @ = \/1—(c056?)2 _ \/1—922 s 1 ns oz as g
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Distance to Move

e Straight path of distance

For given X, probality to have collision in dx after traveling s: p(s)dx = Zte_ztsdx

S , /1S ) ; ) .
C(s) :J‘ zte‘ztsds': P I C(s) : Cummulagve Distribution Function
0 0

C(s)=¢ (random variable)

l-e ™ =¢

S:—In(l—af)’0 —Iné

r =
2z 2z

t t

s, =8xsin0 =sx1-cos’d =sx41-(Q,)*

A,=s,C0sa; A =5, sina
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Segmented Simulation of Flight Across Cells

e Once-through simulation

S
a / i
z“A/ ZB oL

— Requires complicated CDF for more than two cells :

1 2 3 4 5

a X
P(s) = (1— g xA? ) +e T (1— e_ZBS)

e Segmeted simulation
— Stop first at surface if the first random flight distance is obtained longer
than the distance to surface (DTS)

*what would be the probability to stop at surface? P = e >

— Pick a random number for another random flight using X,

P(B|A)= g Zal (1_e—2As) A=Event to move to surface in cell A

i B=Even m in cell B
_ Much simpler vent to move by s in ce
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Determination of Distance to Surface

North surface

West
Surface

East
Surface

Souﬂ1suﬁacé

The four combination of sign of x,y directional vector (£ QX,iQy) determines

a possible surface to be reached after collision
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Collision in Current Cell

Fission Record fission for every collision
T, for more spreaded fission sites than
- can occur with a prob. —, v neutrons per fission fission only after absorption

tg

. . a__ g f
- expected number of fission neutrons per collision v —-

(x, ) Tu
- integer number of fission neutrons IntLv 2—+ §J

E(int(a+¢&))=i,*P(&<l-(a—i))+(i,+1)P(=1-(a-i,))
=i, (1-(a—i,))+ (i, +1(a—i,)=a
Scattering

- can occur with a prob. —~

tg

a9’

- group transfer to g’ can occur with , heed angle selection Outscattering!

Absorption ot

- If not scattering, absorption.

Terminate simulation of the current neutron
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Treatment of Boundary

Determine if the surface is external boundary
If vacuum surface, terminate migration

If reflective surface, change the moving direction
accordingly

e.g. reflection ony — z surface
Q,=-2,0,=0,0,=0Q,

* Then sample another move
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Flow Chart of Simulation of a Neutron Migration

NGE

Determine position ,
shoot _
for i=1:C
- for j=1:n(i)
migrate Determine free flight ;
distance (L) migrate
, Projection to Plane (Lxy) q
| en
Determine distance to , n (i + 1)
surface (Dts) k'=k ——
collision )
. end
Record collision of Move to surface
current cell — _
l (In the cell) (x=X,y=Y,)
Pick up N i V2 L& Externel No
(Number of fission) Zy surface ?
n=n+l )
(Record position) Terminate Reflective
(vacuum)
No Change direction
Determine (Absorption) (Qx =-Q, Q= _Qy)
destination group ‘
‘ Terminate
e (Absorption)
ﬂ Determine direction
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Flux Scoring (Tally)

eNote on time dimension
- Although steady-state condition is simulated in M C calculation, we should adimt that source is

in fact given per unit time

e Collision Estimator RC
: . C _ C 4cC — g
— Reactionrate ofacell: R =X ¢V, — 2 V.5,

— Accumulate the number of collisions. Since source is given per unit time,

the scored number of collisions can be regarded as collision rate. /

Thus dividing it by the volume and total Xsec yields flux.

e Track Length Estimator
— Neutrons passing through a cell should contribute to flux, but missing ]

in the collision estimator if the neutron just passes a cell, not making any collision

— Expected number of reactions for a track of length | formed within a cell: R'g = ngl

— Total number of expected reactions withinacell: Ry=> ZcI7 =% > I
i i

where Iic is the track length generated per unit time (in 3D)

: 1 :
— Reaction Rate:R, =24V =2 > 1IF > ¢, = V—Z I¥ « track density!

[ i

NEE 21/35 SNURPL



Fission Source Treatment

eExpected number of fission neutrons at the subsequent generation

n
in a multiplying medium of k_, #1 for n particles simulated ot
e Adjustment of v by A=
k(Cfl)
—Avoid amplification by k. in advance \
12>
— Fission neutron sampling ni(c) —int] 4 —9 4 & | adjust vby 2
2,
e New estimate of k
—Sum up all the fission neutrons generated: n'® = Z n'®
(c) i
(c) n (c-1) : L :
—Kge = TSy k return to normal by correcting the artificial adjustment of v by =
e
(ve, ) n'
~Collision: ng) = > L - kgl = (z—o_ll)
i z:t N
| (c)
. () (c) n
~Track: ng/= > 1I7vE - k= n(i_rkl)
i
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Inactive vs. Active cycles

«—— Active cycle

|
|
|
|
|
|
|
|
|
|
Il

>
Cycle

I
K . 7
InActive cycle

— because of the unknown source distribution, initial guess of source distribution should be given

causing a lot of variation at the initial phase of cycles.

— need inactive cycles to change the spatial source distribution

from the initial definition to a correct distribution for the problem

— avoid excessively large variance encountered in inactive cycles by avoiding tallies

in this phase
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Statistical Processing

e Sample mean and variance after C active cycle simulations

N, +C

— 1
kcol - Z kéc():l)
C c=N;,+1
N. +C
1 1a _

2 (c) 2
Sk,col = c_1 (kcol _kcol)

c=N;,+1

e Standard deviation of the sample mean

Sk | 1 N;,,+C
,CO T o0
=— | ¥ (el k)’ (FC=C-D

O =
k,col
\Jc C\. .5

- Confidence level
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Example of particle tracing

N

Fission chamber

|
FuelrAssembly .

FuelrAssembly .

Scattering &
Mederation Eission

e

|
- Absorption

FuellAssembly |

Corntrot-Rod

/|

FuetjAssembty

< L336C5G2>
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Example of particle tracing

Surwived lafiter (BR | T T

Fuel -assembly f Fuel -assemblly

Fuel -assembly Fuellassembly

< L336C5G2>

Moderator
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K-eff variation for C5G2 Model Problem

0.98

0.97

0.96

0.95

0.92

0.91

0.94 A

0.93 A

0.9
batch = 20’ OOO
0.89
50 100 150 200 250 300 350 400 450 500
Cycle
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Variance Reduction Methods

Need and Approach

* Reduce the variances of tallies by modifying neutron behavior
- Save neutrons as much as possible instead of killing them while
conserving the mean values of tallies

* Analogue vs. Non-Analogue Monte Carlo

Typical Methods
* Weight Window Method
* Implicit Capture
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Particle Weight

Concept

* A single particle being traced in MC simulation is not a single
neutron, rather a group of neutrons

* The number of neutrons may be adjusted during the simulation
by introducing weight for each particle

Weight
* Relative number of neutrons represented by a particle

10

1
Fission

Fission
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Implicit Capture

Background

* When an absorption reaction occurs, all the neutrons represented by
the particle disappears at once in analogue MC. This can magnify the
variance of MC calculation

Implementation

* Do not kill the particle when absorption is selected. Instead, make it
survive with less weight

* Weight reduction with survival probability

, (=) 3,
w =wx|1- = WX —
VR

t t
* Collision / Track length / Fission Neutron adjustment

AVE.
>

t

e.g. P, = X W
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Termination of Implicit Capture

Deterministic weight reduction after each collision

&>2w if w; =0.5

ZS
W X
(=)
/ - W
R X if w<w - and &>-—

Wy

otherwise, w' = w,

Termination

* Insignificant contribution to tallies if wis too low
e Kill if w<w_low, but with a certain probability

w<w, (0.25) and &> £&.(0.4)

low

* Weight adjustment to conserve the weight

- Adjusted weight can potentially lower then the limit w’ = YoCE (w) = ﬂgs +0-(1-¢,)
e Fixed Adjusted Weight (w_0) s s

- Adjust survival probabilityto . E(w) = w, Y oo.a-

Wy W Wy
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Modified Calculation Flow for Implicit Capture

Fission rjeutron

'Mwﬂmww+<)

4 R fisSi |
’§' g te !

>

. hergyQroup

< p ! chapge

Y Wecove)
e
N

T Russian Roulette
(
=z )

.

< collision routine>

3\
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Effectiveness of Implicit Capture

Estimated keff

0.950 -
0.948 —
0.946 —
0.944 -
0.942 —

0.940 +

<Casel : n=1,000>

—

0.938 -
0.936 -
0.934 -

0.932

0.930

<Case2 : n=10,000>

T Reference k=0.93960

B Analogue MC
B Implicit capture

< Result of L336C5G2>

NGE
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