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Overall Nuclear Design Procedure

Design Bases
*Thermal Power
*Cycle Length
*Capacity Factor

~ Design

Scoping
Calculation
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Preliminary Design Parameters

*Tentative Uranium Enrichment
*Batch Size and Number of Feeds

[
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Criteria

Results

*Safety System Set Points
*DNB & Thermal Margin
*Fuel Temperature
*Corrosion

Safety
Analysis

bl
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Neutronic
Analysis

Assembly Design
*Pin Dimension
*Fuel Enrichment
*BA Loading

*Pin Arrangement
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Core Design

*Fuel Loading Pattern
*Control Rod Arrangement
*Multicycle Refueling Scheme

o Fue
Performance

\_Analysis

Results

*Power Distribution & Peaking Factors
*Reactivity & its Parameters

*Shutdown Margin & Control Rod Worth

*Burnup Distribution
*Kinetics Characteristics
*Xe Oscillation Characteristics
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Boltzmann Transport Equation

Balance Equation for Angular, Energy, and Space Dependent Flux
QeVop(r,E,Q)+X2 (r,E)p(r,E,Q)

— IIZJQ'—) Q,E'> E)(p(r,E,Q)dE'dQ'+4iZ(E)‘//(r)
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Condition Dependence of Macroscopic Cross Section
=(r,E)=> N,(r)o,(T(r),E)

* Energy of Incident Neutrons ‘U2C‘35(‘3ap‘ture‘
- 1/v dependence 10%-

- Resonance behavior 1022
* Temperature (T(r)) of Medium
- Power or flux dependent
* Number Densities of Constituent Isotopes
- Burnup dependent
- Coolant density dependent
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Nonlinear Exhaustive Problem Energy (V)
* Impractical to use Boltzmann equation for real core problems
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Problem Domain and Mesh Structures
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Simplifications for Practical Core Calc.

Multigroup Approach
* Define group cross sections with reaction rate conservation
[ o (r E)p(r, E)dE

o,(r)= :
IE “o(r,E)dE

g

* Use smaller geometry (e.g. Single Assembly) with sufficient
details and fine energy groups to determine spectrum for use in
above definition

* Assume that local spectrum won't change much by presence of
other materials in the core

Diffusion Approximation in Core Calculation

* Neglect angular dependence of flux and approximate neutron
leakage by

V-J (r) where J (r)=-DVg (r)
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Material Dependence of Spectrum
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Further Simplifications in Core Calculation

Homogenization of Different Material Regions

* Neglect details of actual geometrical configuration in local
regions having different compositions

* Use a homogenized mixture for homogenized region

e Allow flux variation within Node

Reconstruction of Local Pin Powers

* Multiply smooth inter-assembly power shape by discrete pin
power form shape
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Two-Step Neutronics Calc. Procedure
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Group Constant Generation

Lattice Transport Calculation

* Performed on fuel assembly base and retain heterogeneous
geometrical configuration within assembly

* Use a multigroup cross section library (e.g. 45 Groups)

* Incorporate composition and geometry dependent resonance self-
shielding into multigroup cross section

* Employs discrete integral transport method to obtain multigroup flux
solution in each region

* Generate assembly homogenized Xsec and pin power shape

* Perform depletion calculation to determine spectrum change due to
fuel burnout and fission product buildup

Restart Calculations
* Generate cross change for condition dependence of cross sections at

selected burnup points
- Enrichment, Fuel Temperature, Coolant Temperature, etc
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Temperature Dependence of Spectrum
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Functional Dependence of Cross Section

(u-235 thermal absorption)
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MOC Lattice Transport Calculation Method

Neutron Balance along Ray

d
W(§)+Zw(§)=q , v =y,
dé
Assume
and

within a Micro Region

m m_-xs -3
Yor =¥in€ +§(1_e )

m m
— Vi Vo +gSegmentAverage
Vim = 5 > Angular Flux

¢ = a)ml/7m
(s = segment length) Zm: Scalar Flux
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Neutronics Calculation Procedure

‘ HELIOS ‘ Lattice Transport Code
T *HELIOS
‘PARAGON
*CASMO
l ‘KARMA
Xsec
Processmg
o 6B & @
‘ MASTER 2 Group Nodal Code
‘MASTER
| *ANC
i ‘ASTRA
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Equivalence Theory in Homogenization - 1

Discontinuity in Homogeneous solution

* |t is possible to construct a homogenized problem fully
consistent with the heterogeneous problem by Introducing a
new degree of freedom, Flux Discontinuity
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Discontinuity

Heterogeneous Solution x|

\
Node Average Flux
v N

\7{  Homogeneous Solution
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Equivalence Theory in Homogenization - 2

Heterogeneous Reference Solution
* Heterogeneous reference solution is obtained for two homogenized nodes
Consistent Homogeneous Solution

* |dentical node average flux to the heterogeneous Solution
- Same reaction rate, eventually same power

e |dentical Interface Current

- Same leakage out of the node, eventually same reactivity
Constraints in the Two-Node Problem |7
e 2 Fluxes and 1 Current '
e Overdetermined for 2"d order differential equation phet
é/: S

Additional Degree of Freedom of Flux Discontinuity ghom
* Introduced to match homogeneous current with heterogeneous Current
at the Interface

Practical Solution to Determine DF

* Solve one node problem given the net current determined from heterogeneous
calculation

Assembly Discontinuity Factors

Generated by Lattice Physics Codes
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Depletion Chain
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Microscopic Depletion

Depletion Equation

— = P_N_ - RN
dt i-1 i-1 i
where P =2,+Y .Y 0.9, Production rate
i g
R =4 +> 0,.0, Removal Rate
g

Analytic Solution

No = > aexp(-R; At)

i=1

where
Pi-lai-lj
a, = ——
R, - R,
i-1
a, = N, At - Zaij
i=1
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