Reactor Numerical Analysis and Design 1st Semester of 2010

Lecture Note 9

Nuclear Design Analysis Procedure and Methods

May 20, 2010

Prof. Joo Han-gyu Department of Nuclear Engineering

Contents

Overall Nuclear Design Procedure

Overview of Calculation Sequence

- Boltzmann Transport Equation and Its Simplification
- Two-Step Neutronics Calculation Procedure

Group Constant Generation

- Lattice Transport Calculation
- Functionalization of Group Constants

Nodal Core Calculation

- Equivalence Theory
- Nodal Methods
- Depletion

Overall Nuclear Design Procedure

Boltzmann Transport Equation

Balance Equation for Angular, Energy, and Space Dependent Flux

$$\begin{split} \Omega \bullet \nabla \varphi(r, E, \Omega) + \Sigma_{t}(r, E)\varphi(r, E, \Omega) \\ &= \iint_{\Omega' E'} \Sigma_{s}(\Omega' \to \Omega, E' \to E)\varphi(r, E, \Omega) dE' d\Omega' + \frac{1}{4\pi} \chi(E) \psi(r) \end{split}$$

Condition Dependence of Macroscopic Cross Section

 $\Sigma(r, E) = \sum N_i(r)\sigma_i(T(r), E)$

- Energy of Incident Neutrons
 - 1/v dependence
 - Resonance behavior
- Temperature (T(r)) of Medium
 - Power or flux dependent
- Number Densities of Constituent Isotopes
 - Burnup dependent
 - Coolant density dependent

Nonlinear Exhaustive Problem

Impractical to use Boltzmann equation for real core problems

Problem Domain and Mesh Structures

Simplifications for Practical Core Calc.

Multigroup Approach

Define group cross sections with reaction rate conservation

- Use smaller geometry (e.g. Single Assembly) with sufficient details and fine energy groups to determine spectrum for use in above definition
- Assume that local spectrum won't change much by presence of other materials in the core

Diffusion Approximation in Core Calculation

 Neglect angular dependence of flux and approximate neutron leakage by

$$\nabla \cdot J_g(r)$$
 where $J_g(r) = -D\nabla \varphi_g(r)$

Material Dependence of Spectrum

Uranium Fuel Pin Gadolinia Burnable Absorber Pin 0.18 0.18 **UOX Outer Pellet Region** Gad Outer Pellet Region 0.16 0.16 0.14 口 MCCARD 0.14 DeCART 0.12 Normalized Spectrum 0.12 Normalized Spectrum MCCARD 0.10 0.10 DeCART 0.08 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0.00 0.00 -0.02 -0.02 10⁻² 10⁻² 10⁻¹ 10[°] 10^{2} 10³ 10⁴ 10^⁵ 10⁶ 107 10⁻¹ 10° 10¹ 10^{2} 10^{3} 10⁴ 10^⁵ 10⁶ 107 10¹ Energy, eV Energy, eV

Spectrum

Further Simplifications in Core Calculation

Homogenization of Different Material Regions

- Neglect details of actual geometrical configuration in local regions having different compositions
- Use a homogenized mixture for homogenized region

• Allow flux variation within Node

Reconstruction of Local Pin Powers

 Multiply smooth inter-assembly power shape by discrete pin power form shape

Two-Step Neutronics Calc. Procedure

Group Constant Generation

Lattice Transport Calculation

- Performed on fuel assembly base and retain heterogeneous geometrical configuration within assembly
- Use a multigroup cross section library (e.g. 45 Groups)
- Incorporate composition and geometry dependent resonance selfshielding into multigroup cross section
- Employs discrete integral transport method to obtain multigroup flux solution in each region
- Generate assembly homogenized Xsec and pin power shape
- Perform depletion calculation to determine spectrum change due to fuel burnout and fission product buildup

Restart Calculations

- Generate cross change for condition dependence of cross sections at selected burnup points
 - Enrichment, Fuel Temperature, Coolant Temperature, etc

Temperature Dependence of Spectrum

 $T_m \uparrow \rightarrow D_m \downarrow \rightarrow Less Moderation \rightarrow More Resonance Absorption$ Spectrum Shifted toward High Energy Region \rightarrow Thermal Xsec \downarrow Causes a decrease in thermal fission in fuel (1/v Xsec) Reactivity reduces \rightarrow Negative MTC

Functional Dependence of Cross Section

(u-235 thermal absorption)

MOC Lattice Transport Calculation Method

Neutronics Calculation Procedure

Equivalence Theory in Homogenization - 1

Discontinuity in Homogeneous solution

• It is possible to construct a homogenized problem fully consistent with the heterogeneous problem by Introducing a new degree of freedom, Flux Discontinuity

Equivalence Theory in Homogenization - 2

Heterogeneous Reference Solution

Heterogeneous reference solution is obtained for two homogenized nodes

Consistent Homogeneous Solution

- Identical node average flux to the heterogeneous Solution
 - Same reaction rate, eventually same power
- Identical Interface Current
 - Same leakage out of the node, eventually same reactivity

Constraints in the Two-Node Problem

- 2 Fluxes and 1 Current
- Overdetermined for 2nd order differential equation

Additional Degree of Freedom of Flux Discontinuity

 Introduced to match homogeneous current with heterogeneous Current at the Interface

Practical Solution to Determine DF

• Solve one node problem given the net current determined from heterogeneous calculation

Assembly Discontinuity Factors

Depletion Chain

Microscopic Depletion

Depletion Equation

$$\frac{dN_i}{dt} = P_{i-1}N_{i-1} - R_iN_i$$

where $P_{i-1} = \lambda_{i-1} + \sum_{i'} y_{ii'} \sum_{g} \sigma_{cgi'} \varphi_{g}$ Production rate $R_{i} = \lambda_{i} + \sum_{g} \sigma_{agi} \varphi_{g}$ Removal Rate

Analytic Solution

$$N_i = \sum_{j=1}^i a_{ij} \exp\left(-R_j \Delta t\right)$$

where

$$a_{ij} = \frac{P_{i-1}a_{i-1j}}{R_i - R_j}$$

$$a_{ii} = N_i \Delta t - \sum_{j=1}^{i-1} a_{ij}$$

