Amplifiers

Operational Amplifier Instrumentation Amplifier Analog Computation Active Filter Grounding Isolation

Function of Amplifiers

- Amplifiers provides
 - GAIN
 - Filtering, Signal processing, Correction for Nonlinearities

Ideal Amps

- Open loop Gain = Infinity
- Input Impedance Rd =
 Infinity
- Output Impedance Ro = 0
- Bandwidth = Infinity
 - Infinite Frequency Response

$$-v_0=0$$
 when $v_1 = v_2$

• No Offset Voltage

OP Amplifier Properties

ldeal Op. Amp.	ideally	means
gain(open-loop)	œ	$\geq 10^4$
open-loop BW	ω	Dominant Pole at 10Hz
CMRR	ω	≥ 70dB
Ri	œ	≥ 10 MΩ
Ro	0	< 500Ω
ΙB	0	< 0.5 <i>µ</i> A
Vos	0	< 10mV
los	0	< 0.2 <i>µ</i> A

How do we achieve these properties?

Two rules of Ideal OP Amps

• Note

$$-v_0 = A(v_2 - v_1)$$

- For finite v_0 and $A = \infty$ (Typically 100,000)
 - $v_2 v_1$ should be $0 \Rightarrow v_2 = v_1$
- Since $v_2 = v_1$ and input impedance is ∞ ,
 - There should be no currents flowing into the input terminals
- Rule 1
 - When the OP Amp is in linear range the two inputs are at the same voltage (Virtual Ground)
- Rule 2
 - No Current flows into either terminal of the OP Amp

Basic OP Amp Circuit Blocks

- Inverting Amplifier
- Noninverting Amplifier
- Unity-Gain Amplifier
- Differential Amplifier
- Instrumental Amplifier
- The ECG(Electrocardiogram) Amplifier

Inverting Amp.

Inverting Amplifier (Cont.)

• Linear Range

- Input Impedance
 Low (Ri)
 - Increasing Ri →
 Decreasing Gain
 - Increasing Gain by increasing Rf
 - But there is practical limit

Why High Input Impedance ?

- Concept of Loading
 - To avoid the effect of output value
 - Only depends on the amplitude of sensor output, not on the frequency or digital output

- Open Loop Output
 Vx
- Voltage Drop by Load
 Vy = Vx -

 $Vx \times Rx / (RL + Rx)$

• Let
$$RL >> Rx$$

- $Vv = Vx$

We can eliminate the effect of amplifier or detector.

Noninverting Amplifiers

Noninverting Amp
Gain = (Rf + Ri) / Rf

- By Rule 2
 - Vo = If \times (Rf + Ri)
 - $Vi = If \times Ri$
 - Vo = Vi × (Rf + Ri)/Ri
- Gain: Vo/Vi = 1 + Rf / Ri
- Gain \geq 1, Always
- Input Impedance
 Very Large (Infinite)

Unity-Gain Amplifier

- Homework #2–1
 - Verify that the Gain of Unity-Gain Amp is 1

- $V_O = V_i$
- Applications
 - Buffer amplifier
 - Isolate one circuit from the loading effects of a following stage
 - Impedance converter
 - Data conversion System (ADC or DAC) where constant impedance or high impedance is required

Differential Amplifiers

- Can reject 60Hz interference
- Example Use of Diff. Amp. In ECG amplifier

Non Inverting Amp.

Follower

Buffer, Impedance Converter

• Non-inverting Amp.

$$V_{o} = i \bullet (R_{i+}R_{f}) \longrightarrow A_{v} = \frac{R_{i+}R_{f}}{R_{i}}$$

Instrumentation Amp- Differential Amp.

High gain DC coupled differential amp with single ended output.
 High Z_{in}, CMRR

Used to Amplify small differential signals from transducer where there may be a large common signal.

Common mode $V_1 = V_2 \rightarrow V_0 = 0 \rightarrow G_c = 0$

 $CMRR = G_d / G_c$

Intro. BME

Differential Amplifiers (Cont.)

- CMRR (Common Mode Rejection Ratio)
 - Measure of the ability to reject CMV
 - CMRR = DG / CMG
 - The Higher CMRR, the better quality
 - Typically, 100 ~ 10,000
 - 60Hz noise common to V1 and V2 can be rejected

Instrumentation Amplifiers

- The One OP Amp Differential Amplifier is not desirable.
 - Input Impedance is not so High
 - Good for Low impedance source
 - Strain gage Bridge
 - Bad for High impedance source
- Thus An Instrumentation Amplifier consists of
 - Differential Amp with High Input Impedance and Low Output Impedance
 - Two Noninvering Amp + One Differential Amp

For High Input Impedance

If $V_1 = V_2$ (CMG) $\Rightarrow i = 0$ $\Rightarrow V_1 = V_2 = V_3 = V_4$ $\Rightarrow G_c$ (CMG) = 0 If $V_1 \neq V_2$ (DMG) $\Rightarrow i = (V_2 - V_1)/R_1$

$$\frac{\mathbf{V}_4 - \mathbf{V}_3}{\mathbf{V}_2 - \mathbf{V}_1} = \frac{\mathbf{R}_1 + 2\mathbf{R}_2}{\mathbf{R}_1} = 1 + 2 \cdot \frac{\mathbf{R}_2}{\mathbf{R}_1}$$

Complete Design of Instrumentation Amp.

$$V_{out} - V_{ref} = G(v_2 - v_1)$$
$$G = \frac{R_4}{R_3} \left(1 + 2\frac{R_2}{R_1} \right)$$

Instrumentation Amplifiers (Cont.)

 Instrumentation Amp = Noninverting Amp + Differential Amp

- DG = (V1-V2) / (V3-V4)
 - = (2*R4 + R3) / R3
- V6 = (V3-V4)*DG*R2 / R1
- First Stage CMRR
 - CMRR = DG/CMG = DG
- Overall CMG = 0
 - High CMRR
- High Input Impedance
- Gain is adjustable by changing R3

Analog Computation

- Digital Signal Processing is preferred
 - Flexibility
 - Easy to Change
 - Elimination of hardware
- Analog Signal Processing
 - Is preferred when DSP consumes too much time

Inverter and Scale Changer

Inverting Amp with
 Gain = - Rf / Ri

- Inverter
 Rf / Ri = 1
- Inverter and Scale
 Changer
 - Proper choice of Rf / Ri
- Application
 - Use of inverter to scale the output of DAC

Adders (Summing Amplifiers)

- Adder
 - Inverter with Several inputs

Vo = -Rf(V1/R1 + V2/R2 +··· + Vn/Rn)

$$-$$
 If = |1 + |2 + In

$$- |1| = V1/R1, \cdots$$

$$-$$
 Vo = $-$ If * Rf

- Rf determines overall Gain
- Ri determines weighting factor and input impedance

Integrator

- Self homework
 - Show that

$$v_0 = \frac{-1}{RC} \int_0^{t_1} v_i dt + v_{ic}$$

- Drawbacks
 - Vo will reach saturation voltage, if Vi is left connected indefinitely
 - Integrator operates as an open-loop amplifier for DC inputs

Differentiators

- Self Homework
- Show that

- Drawbacks
 - Instability at High frequencies
- Practical Differentiator
 To Stable

Comparators

- Compare Two Inputs
 - Vi > Vr
 - $V_O = -V_S$
 - Vi < Vr
 - $V_0 = V_S$

- Drawbacks
 - If Vi = Vr + small
 noise
 - Rapid fluctuation between ± Vs

Comparators with Hysteresis

- Positive Feedback
 - Hysteresis loop
 - Can remove the effect of Small Noise
 - Reduce
 Fluctuation

- Show that

Rectifiers

• Precision Half Wave Rectifier

• Precision Full Wave Rectifier

Limiters ullet

Practical OP Amp Considerations

- Effects of Nonlinear characteristics
 - Compensation
 - Undesirable Oscillation at High frequency
 - Add external Capacitance according to Spec sheet
 - GBW (Gain Bandwidth Product)
 - Gain × Bandwidth = Constant (Typically 1MHz)
 - For Noninverting Amp: Bandwidth = GBW / Gain
 - Input Offset Voltage
 - Practical OP Amp
 - Zero input Does NOT give Zero output
 - Input Offset Voltage
 - Applied input voltage to obtain Zero output
 - Nulling the offset Voltage
 - Adding External Resister according to Spec sheet

OP Amp Considerations (Cont.)

- Input Bias Current
 - Practical OP amp
 - Current flowing into the terminal is NOT Zero
 - To keep the input Tr of OP amp turned on
 - Causes errors proportional to feedback network R
 - To minimize errors
 - feedback R should be low (<10K Ω)
- Slew Rate
 - Maximal rate of change of amplifier output voltage
 - Ex: Slew rate of 741 = 0.5 V / μ s
 - » Time to output change from -5V to 5V = 20 μs
 - To Minimize slew rate problem
 - Use OP amp with smaller external compensating C

OP Amp Considerations (Cont.)

- Power Supply
 - Usually ±15V
 - Linear Range ±13V
 - Reducing power supply voltage
 - Results reduced linear range
 - Device does not work < 4V
- Different OP Amps
 - Bipolar Op Amps
 - Good input offset stability
 - Moderate input bias current and Input resistances
 - FET
 - Very Low input bias current and Very High Input resistances
 - Poor Input offset voltage stability

OP Amps on the market

• Common OP amps, Typical Specifications

Figure	1.18	shows	characteristics o	f	commonly	used	op	amps.
--------	------	-------	-------------------	---	----------	------	----	-------

Туре	Feature	Input bias current	Offset voltage	GBW	Price
741	Low cost	80 nA	2 mV	1 MHz	\$0.35
308	Low bias current	3 nA	2 mV	1 MHz	0.69
ICL8007	FET input	50 pA	50 mV	1 MHz	5.00
CA3130	FET input	6 pA	20 mV	4 MHz	0.89
OP-07	Low offset	1 nA	$30 \mu V$	800 kHz	1.99
LH0052	Low offset	0.5 pA	$0.1 \mu V$	1 MHz	5.00
LF351	High GBW	50 pA	5 mV	4 MHz	0.62
LM312	Low bias current	3 nA	0.7 mV	1 MHz	2.49
UC4250	Programmable	7.5 nA	4 mV	800 kHz	1.84

Filters

- Passive Circuits
 - Contains only passive elements
 - Registers, Capacitors and Inductors
 - Examples
 - Bridge Circuit
 - Voltage Divider
 - Filters
- Filters
 - Eliminate unwanted signal from the loop
 - Low Pass, High Pass, Band Pass, Notch, ...

Passive first-order Low pass Filter

- Pass desired Audio signal and reject undesired RF
- Order of Filter
 - Number of C and L

Show that

$$\frac{V_o}{V_i} = \frac{1}{1 + j\omega\tau}, \quad \tau = RC$$

 Plot Magnitude and Phase plot (Bode plot)

– Meaning of
$$\omega_{\rm C}$$

Passive first-order High pass Filter

 Pass desired High frequency signal and reject undesired low frequency signal

- Show that $\frac{V_o}{V_i} = \frac{j\omega\tau}{1+j\omega\tau}, \quad \tau = RC$
- Plot Magnitude and Phase plot (Bode plot)
- \blacklozenge Meaning of $\omega_{\rm C}$

Passive second-order Low pass Filter

- To increase the attenuation of transfer function
- Order of Filter
 - ♦ Number of C and L

- Show that $\frac{V_o}{V_i} = \frac{1}{(j\omega/\omega_c)^2 + (2\zeta j\omega/\omega_c) + 1}$ $\omega_c = \sqrt{\frac{1}{LC}}, \zeta = \frac{R}{2}\sqrt{\frac{C}{L}}$
- Meaning of Quality factor $Q = \frac{1}{2\zeta} = \frac{\omega_c}{\Delta\omega}, \Delta\omega = 3dBBW$

Passive second-order High pass Filter

- To increase the attenuation of transfer function
- Order of Filter
 - ◆ Number of C and L

• Show that $\frac{V_o}{V_i} = \frac{\omega^2}{(j\omega/\omega_c)^2 + (2\zeta j\omega/\omega_c) + 1}$ $\omega_c = \sqrt{\frac{1}{LC}}, \zeta = \frac{R}{2}\sqrt{\frac{C}{L}}$

Active First-order Low Pass Filter

 Inverting Amp + Feedback Capacitor

- Identical frequency response with Passive filter
- Very Low Output impedance
 - Negligible Loading
 Effect

Active First-order High Pass Filter

- Inverting Amp + Input Capacitor
- Identical frequency response with Passive filter
- Very Low Output impedance
 - Negligible Loading Effect

Active High-order Filters

Low Pass Filters

• High Pass Filters

Bandpass and Band-reject Filters

- Butterworth Filters
 - Maximally Flat Magnitude response in pass band
 - High Attenuation Rate
- Chebyshev Filters
 - Maximum Attenuation Rate
 - Ripple in pass band
- Bessel Filters
 - Maximally flat time delay in response to step input
 - Attenuation Rate is very gradual

Filter Design Table

• C when $\omega_0 = R_0 = 1$

Poles	Ci	C ₂	C ₃	C ₁	C ₂	C ₃	
Bessel				Butterworth			
2	9.066 -1	6.799 -1		1.414 +0	7.071 -1		
3	1.423 +0	9.880 -1	2.538 -1	3.546 +0	1.392 +0	2.024 - 1	
4	7.351 - 1	6.746 -1.		1.082 +0	9.241 -1		
	1.012 + 0	3.900 - 1		2.613 + 0	3.825 - 1		
5	1.009 + 0	8.712 -1	3.095 -1	1.753 +0	1.354 + 0	4.214 - 1	
	1.041 +0	3.098 -1		3.235 +0	3.089 -1		
6	6.352 - 1	6.098 - 1		1.035 +0	9.660 - 1		
Ŭ	7.225 - 1	4.835 -1		1.414 +0	7.071 - 1		
	1.073 +0	2.561 -1		3.863 +0	2.588 - 1		
2-dB Chebyshev				0.25-dB Chebyshev			
2	2.672 +0	5.246 -1		1.778 + 0	6.789 -1		
3	2.782 + 1	3.113 +0	3.892 -2	8.551 +0	2.018 +0	1.109 -1	
4	4.021 ± 0	1.163 ± 0		2.221 +0	1.285 + 0		
,	9.707 + 0	1.150 - 1		5.363 +0	2.084 - 1		
5	1.240 + 1	4.953 +0	1.963 -1	5.543 +0	2.898 + 0	3.425 - 1	
5	1.499 + 1	7.169 -2		8.061 +0	1.341 -1		
6	5.750 ± 0	1.769 + 0		3.044 +0	1.875 +0		
	7.853 +0	2.426 - 1		4.159 +0	4.296 -1		
	2.146 +1	4.902 -2		1.136 +1	9.323 -2		

Filter Design Example

- Low pass five-pole Butterworth filter with a corner frequency of 200Hz and input resistance of 50K $\!\Omega$
 - Economic Solution = 3rd order + 2nd order
 - Desired R and C?
 - $C_{1A} = (\omega_0 R_0 C_0) / (\omega R)$ = 1x1x1.753 / 2 π x200x50K = 27.9 nF

•
$$C_{2A} = 21.6 \text{ nF}, C_{3A} = 6.7 \text{ nF}, C_{1B} = 51.5 \text{ nF}, C_{2B} = 4.9 \text{ nF}$$

The Electrocardiogram Amplifier Low Pass Filter

Interference

- Noise : random
- Interference : not random, comes from a known source
- Dominant interference : 60Hz
 - Thru. ① AC capacitive coupling
 - ② AC inductive coupling
 - ③ Ground loops
 - Solutions
 - (1) Elimination at the source
 - Use of Instrumentation Amps and Isolation Amps.
 - Star Ground (one true ground)
 - (2) (Adaptive) Filtering

• Ground Loop is a problem.

• Ground Loop => safety

During ExG (x=E,M,C etc.) measurements, a ground loop current can threaten the safety of the patient under measurement.

• Bias current => safety

Devices with particularly small $\rm I_B$ is favored. Ex) AD55L max $\rm I_B$ = 75fA

AD00L max $I_B = 10 fA$

- Solution : (I) Differential Transmission :
- Grounding only at source to prevent the group loop.

- Solution(II) : Isolation between Measure and Computer stations.
 - By transformer

- Optical coupling :optical isolator : (LED/LD)-PD combination
- Radio link
 - Signal Modulator Transmitter …– Receiver Demodulator

Datasheet

ANALOG DEVICES

Low Cost, Miniature Isolation Amplifiers

AD202/AD204

FEATURES

Small Size: 4 Channels/Inch Low Power: 35 mW (AD204) High Accuracy: ±0.025% max Nonlinearity (K Grade) High CMR: 130 dB (Gain = 100 V/V) Wide Bandwidth: <u>5 kHz</u> Full-Power (AD204) High CMV Isolation: ±2000 V pk Continuous (K Grade) (Signal and Power) Isolated Power Outputs Uncommitted Input Amplifier

APPLICATIONS

Multichannel Data Acquisition Current Shunt Measurements Motor Controls Process Signal Isolation High Voltage Instrumentation Amplifier

GENERAL DESCRIPTION

The AD202 and AD204 are general purpose, two-port, transformer-coupled isolation amplifiers that may be used in a broad range of applications where input signals must be measured, i nese industry standard isolation amplifiers offer a complete isolation function, with both signal and power isolation provided

FUNCTIONAL BLOCK DIAGRAM

Isolation mode rejection ratio(IMRR);105dB@60Hx

ing. For applications requiring a low profile, the DIP package provides a height of just 0.350".

High Accuracy: With a maximum nonlinearity of $\pm 0.025\%$ for the AD202K/AD204K ($\pm 0.05\%$ for the AD202J/AD204J) and low drift over temperature, the AD202 and AD204 provide high isolation without loss of signal integrity.

Low Power: Power consumption of 35 mW (AD204) and 75 mW (AD202) over the full signal range makes these isolators power budgets.

Choice of resistors (R3 and R4) for Nulling the bias current

Assume

$$V^{+} = V^{-}$$

$$I_{b1} = I_{b2} = I_{b}$$

$$\frac{Vo - V^{-}}{Rf} + \frac{Vi - V^{-}}{Ri} = Ib \quad (eq \ 1)$$

Ideally we want, Vo/Rf = -Vi/Ri (eq 2)

Comparing eq 1 and 2,

$$I_{b} + V^{+} / (Rf / /Ri) = 0$$

This condition can be satisfied by the next circuit.

