
Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-1

Chapter 3: Dataflow Modeling

Prof. Soo-Ik Chae

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-2

Objectives

After completing this chapter, you will be able to:

 Describe what is the dataflow modeling

 Describe how to use continuous assignments

 Describe how to specify delays in continuous assignments

 Describe the data types allowed in Verilog HDL

 Describe the operation of the operators used in Verilog HDL

 Describe the operands may be used associated with a

specified operator

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-3

Why Dataflow ?

 Rationale of dataflow: any digital system can be constructed

by interconnecting registers and a combinational logic put

between them for performing the necessary functions.

 Dataflow provides a powerful way to implement a design.

 Logic synthesis tools can be used to create a gate-level

circuit from a dataflow design description.

 RTL (register transfer level) is a combination of dataflow

and behavioral modeling.

pipelining

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-4

Assignments

 Two basic forms of assignments

 Continuous assignment: assign values to nets

 Procedural assignment: assign values to variables

 Two additional forms of assignments: procedural continuous
assignments

 assign/deassign

 force/release

 An assignment consists of two parts: a LHS and a RHS
separated by = or <=

 RHS: any expression that evaluates to a value to which
the LHS value is to be assigned.

 LHS: can take one of the forms given in Table 30.

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-5

Assignments

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-6

Continuous Assignments

 Continuous assignment: the most basic statement of dataflow

modeling.

 It is used to drive a value onto a net.

 It is always active.

 Provides a way to model combinational logic without

specifying an interconnection of gates. Instead, it

specifies the logical expression that drives the net.

 It can only update values of net data types such as wire,

triand, etc.

 This assignment shall occur whenever the value of the

right-hand side changes.

assign {c_out, sum[3:0]} = a[3:0] + b[3:0] + c_in;
Example:

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-7

Continuous Assignments

 A continuous assignment begins with the keyword assign.

assign net_lvalue = expression;

assign net1 = expr1,

net2 = expr2,

...,

netn = exprn;

 net_lvalue is a scalar or vector net, or their concatenation.

 RHS operands can be variables or nets or function calls.

 Registers or nets can be scalar or vectors.

 Delay values can be specified.

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-8

Continuous Assignments

 Assignments on nets shall be continuous and automatic

 This means that

 whenever an operand in the RHS expression changes

value, the whole RHS shall be evaluated and if the new

value is different from the previous value, then the new

value shall be assigned to the LHS.

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-9

Continuous Assignments

 An implicit continuous assignment

 is the shortcut of declaring a net first and then writing a

continuous assignment on the net.

 is always active.

 can only have one implicit declaration assignment per net.

wire out; // net declaration

assign out = in1 & in2; // regular continuous assignment

wire out = in1 & in2; // implicit continuous assignment

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-10

Continuous Assignments

 An implicit net declaration

 is a feature of Verilog HDL.

 will be inferred for a signal name when it is used to the

left of a continuous assignment.

Note that: out is not declared as a wire, but an implicit

wire declaration for out is done by the simulator.

wire in1, in2;

assign out = in1 & in2;

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-11

Delays

 Three ways of specifying delays

 Regular assignment delay

 Implicit continuous assignment delay

 Net declaration delay

 Regular assignment delays

 The delay value is specified after the keyword assign.

 The inertial delay model is used (default model).

wire in1, in2, out;

assign #10 out = in1 & in2;

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-12

Delays

 Implicit continuous assignment delays

 An implicit continuous assignment is used to specify both

the delay and assignment on the net.

 The inertial delay model is used (default model).

// implicit continuous assignment delay

wire #10 out = in1 & in2; // the delay is part of the continuous assignment

// and is not a net delay.

// regular assignment delay

wire out;

assign #10 out = in1 & in2;

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-13

Continuous assignment and delays

 In situations where a RHS operand changes before a previous change

has had to propagate to the LHS, then the following steps are taken.

1. The value of the RHS expression is evaluated

2. If the RHS value differs from the value currently scheduled to

propagate the LHS, then the currently scheduled propagation event

is descheduled.

3. If the new RHS value equals the current LHS value, no event is

scheduled.

4. If the new RHS value differs from the current LHS value, a delay is

calculated in the standard way using the current value of the LHS,

the newly calculated value of the RHS, and the delays indicated on

the statement; a new propagate event is then scheduled to occur

delay time units in the future.

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-14

Delays

 Net declaration delays

 A net can be declared associated with a delay value.

 Net declaration delays can also be used in gate-level

modeling.

// net delays

wire #10 out; // transport delay

assign out = in1 & in2;

// regular assignment delay

wire out;

assign #10 out = in1 & in2; // inertial delay

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-15

The Basis of Dataflow Modeling

 The essence of dataflow modeling is

expression = operators + operands

 Operands can be any one of allowed data types.

 Operators act on the operands to product desired results.

Operands:

- constants

- integers

- real numbers

- nets

- registers

- time

- bit-select

- part-select

- memories

- function calls

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-16

Operators

LogicalShift

Arithmetic

+: add

- : subtract

* : multiply

/ : divide

% : modulus

Bitwise

~ ：NOT

Reduction

&：AND

| ：OR

^：XOR

~^, ^~：XNOR

&：AND

|：OR

~&：NAND

~|：NOR

^：XOR

<< : left shift

>> : right shift

Relational

>= : greater than or equal

<=: less than or equal

>: greater than

<: less than

==: equality

!=: inequality

&&: AND

|| : OR

! : NOT

case equality

===: equality

!==: inequality

Miscellaneous

{ , }: concatenation

{c{ }}: replication

? : conditional

<<< : arithmetic left shift

>>>: arithmetic right shift

**: exponent ~^, ^~：XNOR

Equality

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-17

Precedence of Operators

Operators

Unary

Multiply, divide, modulus

Symbols

+ - ! ~

* / %

Precedence

Highest

Add, subtract + -

<< >> <<< >>>Shift

Relational < <= > >=

== != === !==Equality

Reduction

Logical

& ~&

^ ^~

| ~|

&&

||

Conditional ?: Lowest

Exponent **

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-18

Operands

 The operands in an expression can be any of:

 constants,

 parameters,

 nets,

 variables (reg, integer, time, real, realtime),

 bit-select,

 part-select,

 array element, and

 function calls

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-19

Constants

 Three types of constant in Verilog HDL are

 integer: a general-purpose variable used of manipulating

quantities that are not regarded as hardware registers.

 real, and

 string

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-20

Constants

 Integer constant

 simple decimal form

-123 // is decimal -123

12345 // is decimal 12345

 base format notation

16’habcd // a 16-bit hexadecimal number

2006 // unsized number--a 32-bit decimal number

4’sb1001 // a 4-bit signed number, it represents -7.

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-21

Constants

 Real constant

 decimal notation
1.5 //
.3 // illegal ---
1294.872 //

 scientific notation
15E12
32E-6
26.176_45_e-12

 String constant
 A string is a sequence of characters enclosed by double

quotes ("").
 It may not be split into multiple lines.
 One character is represented as an 8-bit ASCII code.

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-22

Data Types

 Two classes of data types:

 nets: Nets mean any hardware connection points.

 variables: Variables represent any data storage elements.

 Variable data types

 reg

 integer

 time

 real

 realtime

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-23

Variable Data Types

 A reg variable

 holds a value between assignments.

 may be used to model hardware registers.

 need not actually represent a hardware storage element.

reg a, b; // reg a, and b are 1-bit reg

reg [7:0] data_a; // an 8-bit reg, the msb is bit 7

reg [0:7] data_b; // an 8-bit reg, the msb is bit 0

reg signed [7:0] d; // d is an 8-bit signed reg

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-24

The integer Variable

 The integer variable

 contains integer values.

 has at least 32 bits.

 is treated as a signed reg variable with the lsb being bit 0.

integer i,j; // declare two integer variables

integer data[7:0]; // array of integer

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-25

The time Variable

 The time variable

 is used for storing and manipulating simulation time

quantities.

 is typically used in conjunction with the $time system

task.

 holds only unsigned value and is at least 64 bits, with the

lsb being bit 0.

time events; // hold one time value

time current_time; // hold one time value

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-26

The real and realtime Variables

 The real and realtime variables

 cannot use range declaration and

 their initial values are defaulted to zero (0.0).

real events; // declare a real variable

realtime current_time; // hold current time as real

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-27

Vectors

 A vector (multiple bit width) describes a bundle of signals as

a basic unit.

 [high:low] or [low:high]

 The leftmost bit is the MSB.

 Both nets and reg data types can be declared as vectors.

 The default is 1-bit vector or called scalar.

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-28

Bit-Select and Part-Select

 Bit-Select and Part-Select

 integer and time can also be accessed by bit-select or

part-select.

 real and realtime are not allowed to be accessed by bit-

select or part-select.

 Constant part select: data_bus[3:0], bus[3]

 Variable part select:

[<starting_bit>+:width]: data_bus[8+:8]

[<starting_bit>-:width]: data_bus[15-:8]

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-29

Array and Memory Elements

 Array and Memory Elements

 all net and variable data types are allowed to be declared

as multi-dimensional arrays.

 an array element can be a scalar or a vector if the element

is a net or reg data type.

wire a[3:0]; // a scalar wire array of 4 elements

reg d[7:0]; // a scalar reg array of 8 elements

wire [7:0] x[3:0]; // an 8-bit wire array of 4 elements

reg [31:0] y[15:0]; // a 32-bit reg array of 16 elements

integer states [3:0]; // an integer array of 4 elements

time current[5:0]; // a time array of 6 elements

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-30

The Memory

Memory

 Memory is used to model a read-only memory (ROM), a

random access memory (RAM), and a register file.

 Reference to a memory may be made to a whole word or

a portion of a word of memory.

reg [3:0] mema [7:0]; // 1-d array of 4-bit vector

reg [7:0] memb [3:0][3:0]; // 2-d array of 8-bit vector

wire sum [7:0][3:0]; // 2-d array of scalar wire

mema[4][3] // the 3rd bit of 4th element

mema[5][7:4] // the higher four bits of 5th element

memb[3][1][1:0] // the lower two bits of [3][1]th element

sum[5][0] // [5][0]th element

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-31

Bitwise Operators

 Bitwise operators

 They perform a bit-by-bit operation on two operands.

 A z is treated as x in bit-wise operation.

 The shorter operand is zero-extended to match the length

of the longer operand.

Symbol

~

&

|

^

~^, ^~

Operation

Bitwise negation

Bitwise and

Bitwise or

Bitwise exclusive or

Bitwise exclusive nor

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-32

A 4-to-1 MUX

module mux41_dataflow(i0, i1, i2, i3, s1, s0, out);

// Port declarations

input i0, i1, i2, i3;

input s1, s0;

output out;

// Using basic and, or , not logic operators.

assign out = (~s1 & ~s0 & i0) |

(~s1 & s0 & i1) |

(s1 & ~s0 & i2) |

(s1 & s0 & i3) ;

endmodule

 un8_out

 un1_out

 un4_out

 un6_out

 out

out

s0

s1

i3

i2

i1

i0

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-33

Arithmetic Operators

 Arithmetic operators

 If any operand bit has a value x, then the result is x.

 The operators + and – can also used as unary operators to

represent signed numbers.

 Modulus operators produce the remainder from the

division of two numbers.

 In Verilog HDL, 2’s complement is used to represent

negative numbers. Symbol

+

-

*

/

%

Operation

Addition

Subtraction

Multiplication

Division

Modulus

** Exponent (power)

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-34

Concatenation and Replication Operators

 Concatenation operators

 The operands must be sized.

 Operands can be scalar nets or registers, vector nets or

registers, bit-select, part-select, or sized constants.

 Example: y = {a, b[0], c[1]};

 Replication operators

 They specify how many times to replicate the number

inside the braces.

 Example: y = {a, 4{b[0]}, c[1]};

Symbol

{ , }

{const_expr{}}

Operation

Concatenation

Replication

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-35

A 4-bit Full Adder

module four_bit_adder(x, y, c_in, sum, c_out);

// I/O port declarations

input [3:0] x, y; // declare as a 4-bit array

input c_in;

output [3:0] sum; // declare as a 4-bit array

output c_out;

// Specify the function of a 4-bit adder.

assign {c_out, sum} = x + y + c_in;

endmodule
 sum_1[4:0]

+

 sum[3:0]

[3:0]

[4:0][3:0] [3:0][3:0]

c_out
[4]

sum[3:0]
[3:0]

c_in

y[3:0]
[3:0]

x[3:0]
[3:0]

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-36

A multiply and accumulate (MAC) unit

// an example to illustrate arithmetic operators

module multiplier_accumulator (x, y, z, result);

input [7:0] x, y, z;

output [15:0] result;

assign result = x * y + z;

endmodule

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-37

Result size of an expression

// an example to illustrate arithmetic operators

module arithmetic_operators (a, b, e, c, d);

input [3:0] a, b;

input [6:0] e;
output [3:0] c;

output [7:0] d;

assign c = a + b;

assign d = a + b + e;

endmodule

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-38

Mixed signed and unsigned operands

// an example to illustrate arithmetic operators

module arithmetic_operators (a, b, e, c, d);

Input signed [3:0] a, b;

input [6:0] e;
output signed [3:0] c;

output [7:0] d;

assign c = a + b;

assign d = a + b + e;

endmodule

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-39

A 4-bit two’s complement adder

module twos_adder(x, y, c_in, sum, c_out);

// I/O port declarations

input [3:0] x, y; // declare as a 4-bit array

input c_in;

output [3:0] sum; // declare as a 4-bit array

output c_out;

wire [3:0] t; // outputs of xor gates

// Specify the function of a two's complement adder

assign t = y ^ {4{c_in}};

assign {c_out, sum} = x + t + c_in;

endmodule

 t[3:0]
 sum_1[4:0]

+

 sum[3:0]

[3:0]
[3:0]

[3:0]

[4:0][3:0] [3:0][3:0]

c_out
[4]

sum[3:0]
[3:0]

c_in

y[3:0]
[3:0]

x[3:0]
[3:0]

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-40

Reduction Operators

 Reduction operators

 perform only on one vector operand.

 carry out a bit-wise operation on a single vector operand

and yield a 1-bit result.

 work bit by bit from right to left.

Symbol

&

~&

|

~|

^

Operation

Reduction and

Reduction nand

Reduction or

Reduction nor

Reduction exclusive or

~^, ^~ Reduction exclusive nor

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-41

Reduction Operators --- A 9-Bit Parity Generator

module parity_gen_9b_reduction(x, ep,op);

// I/O port declarations

input [8:0] x;

output ep, op;

// dataflow modeling using reduction operator

assign ep = ^x; // even parity generator

assign op = ~ep; // odd parity generator

endmodule

 ep

 op

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

op

epx[8:0]
[8:0]

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-42

Reduction Operators --- An All-Bit-Zero/One detector

module all_bit_01_detector_reduction(x, zero,one);

// I/O port declarations

input [7:0] x;

output zero, one;

// dataflow modeling

assign zero = ~(|x); // all-bit zero detector

assign one = &x; // all-bit one detector

endmodule

one

 un1_zero

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

x[7:0]
[7:0]

one

zero

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-43

Logical Operators

 Logical operators

 They always evaluate to a 1-bit value, 0, 1, or x.

 If any operand bit is x or z, it is equivalent to x and

treated as a false condition by simulators.

Symbol

!

&&

||

Operation

Logical negation

Logical and

Logical or

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-44

Relational Operators

 Relational operators

 They return logical value 1 if the expression is true and 0

if the expression is false.

 The expression takes a value x if there are any unknown

(x) or z bits in the operands.

Symbol

>

<

>=

<=

Operation

Greater than

Less than

Greater than or equal

Less than or equal

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-45

Equality Operators

 Equality operators

 compare the two operands bit by bit, with zero filling if

the operands are of unequal length.

 return logical value 1 if the expression is true and 0 if the

expression is false.

 The operators (==, !=) yield an x if either operand has x or z

in its bits.

 The operators (===, !==) yield a 1 if the two operands match

exactly and 0 if the two

operands not match

exactly.

Symbol

==

!=

===

!==

Operation

Logical equality

Logical inequality

Case equality

Case inequality

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-46

Relational Operators --- A 4-b Magnitude Comparator

module four_bit_comparator(Iagtb, Iaeqb, Ialtb, a, b, Oagtb, Oaeqb, Oaltb);

// I/O port declarations

input [3:0] a, b;

input Iagtb, Iaeqb, Ialtb;

output Oagtb, Oaeqb, Oaltb;

// dataflow modeling using relation operators

assign Oaeqb = (a == b) && (Iaeqb == 1); // equality

assign Oagtb = (a > b) || ((a == b)&& (Iagtb == 1)); // greater than

assign Oaltb = (a < b) || ((a == b)&& (Ialtb == 1)); // less than

endmodule

A
0

A
1

A
3

A
2

B
0

B
1B

3
B

2

I
A>B

I
A=B

I
A<B

O
A>B

O
A=B

O
A<B

4-bit comparator

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-47

Shift Operators

 Logical shift operators

 >> operator: logical right shift

 << operator: logical left shift

 The vacant bit positions are filled with zeros.

 Arithmetic shift operators

 >>> operator: arithmetic right shift

• The vacant bit positions are filled with the MSBs (sign bits).

 <<< operator: arithmetic left shift

• The vacant bit positions are filled with zeros.

Symbol

>>

<<

>>>

<<<

Operation

Logical right shift

Logical left shift

Arithmetic right shift

Arithmetic left shift

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-48

Shift Operators

// example to illustrate logic and arithmetic shifts

module arithmetic_shift(x,y,z);

input signed [3:0] x;

output [3:0] y;

output signed [3:0] z;

assign y = x >> 1; // logical right shift

assign z = x >>> 1; // arithmetic right shift

endmodule

Note that: net variables x and z must be declared with the keyword signed.

Replaced net variable with unsigned net (i.e., remove the keyword signed)

and see what happens.

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-49

The Conditional Operator

 Conditional Operator

Usage: condition_expr ? true_expr: false_expr;

 The condition_expr is evaluated first.

 If the result is true then the true_expr is executed;

otherwise the false_expr is evaluated.

if (condition_expr) true_expr;

else false_expr;

 a 2-to-1 multiplexer

assign out = selection ? in_1: in_0;

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-50

The Conditional Operator --- A 4-to-1 MUX

module mux4_to_1_cond (i0, i1, i2, i3, s1, s0, out);

// Port declarations from the I/O diagram

input i0, i1, i2, i3;

input s1, s0;

output out;

// Using conditional operator (?:)

assign out = s1 ? (s0 ? i3 : i2) : (s0 ? i1 : i0) ;

endmodule

 un1_s1_1

 un1_s1_2

 un1_s0_1

 un1_s0_2

 out

e

d

e

d

e

d

e

d

out

s0

s1

i3

i2

i1

i0

