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Linking 

Combines several object modules into a 
single executable module. 

Jobs: 

put modules in order; 

resolve labels across modules. 
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Module ordering 

Code modules must be placed in absolute 
positions in the memory space. 

Load map or linker flags control the order 
of modules. 

module1 

module2 

module3 
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Linker and Loader 

The linker does the symbol resolution 

The loader does the program loading  

Either of them can do the relocation. 
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Static shared library and DLL 



Computers as Components 6 

Dynamic Linking 

Only link/load library procedure when it is 
called 

Shares one copy of library among all 
executing programs; 

Requires procedure code to be relocatable 

Automatically picks up new library versions 
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Loading a Program 

 Load from image file on disk into memory 

1. Read header to determine segment sizes 

 Validation: permission, memory requirement 

2. Create virtual address space 

3. Copy text and initialized data into memory 

 Or set page table entries so they can be faulted in 

4. Copy command line arguments on stack 

5. Initialize registers (including $sp, $fp) 

6. Jump to startup routine 
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5.4 Basic compilation techniques 

Compilation flow. 

Basic statement translation. 

Basic optimizations. 

Interpreters and just-in-time compilers. 
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Compilation 

Compilation strategy (Wirth): 

compilation = translation + optimization 

Compiler determines quality of code: 

use of CPU resources; 

memory access scheduling; 

code size. 
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Basic compilation phases 

HLL 

parsing, symbol table 

machine-independent 

optimizations 

machine-dependent 

optimizations 

assembly 
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Statement translation and 

optimization 

Source code is translated into 
intermediate form such as CDFG. 

CDFG is transformed/optimized. 

CDFG is translated into instructions with 
optimization decisions. 

Instructions are further optimized. 
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Arithmetic expressions 

a*b + 5*(c-d) 

expression 

DFG 

* - 

* 

+ 

a b c d 

5 
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2 

3 

4 

1 

Arithmetic expressions 

ADR r4,a 

MOV r1,[r4] 

ADR r4,b 

MOV r2,[r4] 

ADD r3,r1,r2 

DFG 

* - 

* 

+ 

a b c d 

5 

ADR r4,c 

MOV r1,[r4] 

ADR r4,d 

MOV r5,[r4] 

SUB r6,r4,r5 

MUL r7,r6,#5 

ADD r8,r7,r3 

code 
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Control code generation 

if (a+b > 0) 

 x = 5; 

else 

 x = 7; 

a+b>0 x=5 

x=7 
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3 

2 1 

Control code generation 

 ADR r5,a 

 LDR r1,[r5] 

 ADR r5,b 

 LDR r2,b 

 ADD r3,r1,r2 

 BLE label3 

a+b>0 x=5 

x=7 
 LDR r3,#5 

 ADR r5,x 

 STR r3,[r5] 

 B label4 

label3       LDR r3,#7 

       ADR r5,x 

            STR r3,[r5] 

label4        ... 
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Procedure linkage 

Need code to: 

call and return; 

pass parameters and results. 

Parameters and returns are passed on 
stack. 

Procedures with few parameters may use 
registers. 
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Procedure stacks 

proc1 
Stack growth 

proc1(…) { 

 proc2(…); 

} 

proc2 

SP 

stack pointer 

end of current frame 

FP 

frame pointer 

end of last frame 

accessed relative to SP 
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ARM procedure linkage 

APCS (ARM Procedure Call Standard): 

r0-r3 pass parameters into procedure. Extra 
parameters are put on stack frame. 

r0 holds return value. 

r4-r7 hold register values. 

r11 is frame pointer, r13 is stack pointer. 

r10 holds limiting address on stack size to 
check for stack overflows. 
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Data structures 

Different types of data structures use 
different data layouts. 

Some offsets into data structure can be 
computed at compile time, others must be 
computed at run time. 
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One-dimensional arrays 

C array name points to 0th element: 

a[0] 

a[1] 

a[2] 

a 

 *(a + 2x4) 
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Two-dimensional arrays 

Row-major layout: 

a[0,0] 

a[0,1] 

a[1,0] 

a[1,1] = a[i*M+j] 

... 

M 
Inner variable j varies 

more quickly 

Array size: a[N,M] 

a[i,j] 
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Two-dimensional arrays 

Column-major layout:               FORTRAN 

a[0,0] 

a[1,0] 

a[0,1] 

a[1,1] = a[i+j*N] 

... 

N 

Array size: a[N,M] 

a[i,j] 
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Structures 

Fields within structures are static offsets: 

field1 

field2 

aptr 
struct { 

   int field1; 

   char field2; 

} mystruct; 

 

struct mystruct a, *aptr = &a; 

 

4 bytes 

*(aptr+4) 
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Expression simplification 

Machine independent transformation 

Constant folding: 

8+1 = 9 

Expression simplification: 

a*b + a*c = a*(b+c) 

Strength reduction: 

a*2 = a<<1 
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Dead code elimination 

Dead code:  code that never be executed 

difficult to identify in general 

Can be eliminated by analysis of control 
flow. 

a special case   
#define DEBUG 0 

if (DEBUG) dbg(p1); 

0 

dbg(p1); 

1 

0 
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Procedure inlining 

Eliminates procedure linkage overhead: 

Increase code size  

 

int foo(a,b,c) { return a + b - c;} 

z = foo(w,x,y); 

 

z = w + x + y; 
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Loop transformations 

Goals: 

reduce loop overhead; 

increase opportunities for pipelining; 

Reduce pipeline stalls 

improve memory system performance. 



Computers as Components 28 

Loop unrolling 

Reduces loop overhead, enables some 
other optimizations. 

Expose parallelism 

 
for (i=0; i<4; i++) 

 a[i] = b[i] * c[i]; 

 
for (i=0; i<2; i++) { 

 a[i*2] = b[i*2] * c[i*2]; 

 a[i*2+1] = b[i*2+1] * c[i*2+1]; 

} 
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Loop fusion and distribution 

Fusion combines two loops into one: 
for (i=0; i<N; i++) a[i] = b[i] * 5; 
for (j=0; j<N; j++) w[j] = c[j] * d[j]; 
 
 for (i=0; i<N; i++) { 

    a[i] = b[i] * 5;  
      w[i] = c[i] * d[i]; 
  } 

Loop distribution breaks one loop into 
two. 
Both changes optimizations within loop 

body. 
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Loop tiling 

Breaks one loop into a nest of loops. 

Changes order of accesses within array. 

Changes cache behavior: why? 
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Loop tiling example 

for (i=0; i<N; i++) 

  for (j=0; j<N; j++) 

  c[i] = a[i,j]*b[i]; 

for (i=0; i<N; i+=k) 

   for (j=0; j<N; j+=k) 

       for (ii=0; ii<min(i+k,n); ii++) 

          for (jj=0; jj<min(j+k,N); jj++) 

  c[ii] = a[ii,jj]*b[ii]; 

3N 3n 
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Array padding 

Add array elements to change mapping 
into cache, which reduces conflict: 
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Register allocation 

Goals: 

choose register to hold each variable; 

determine lifespan of variable in the register. 

Basic case: within basic block. 

Spilling registers: problematic 
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Register lifetime graph 

w = a + b; 

x = c + w; 

y = c + d; 

time 

a 

b 

c 

d 

w 

x 

y 

1 2 3 

t=1 

t=2 

t=3 

Register assignment 

a r0; b r1; c r2; d r0; w r3; x r0; y r3 
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Conflict graph 

time 

a 

b 

c 
d 
w 
x 
y 

1 2 3 

Register assignment 

a r0; b r1; c r2; d r0; w r3; x r0; y r3 

a b 

x 

w 

y 

c 

d 

Conflict graph 

Minimum coring problem 
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Instruction scheduling 

Non-pipelined machines do not need 
instruction scheduling: any order of 
instructions that satisfies data 
dependencies runs equally fast. 

In pipelined machines, execution time of 
one instruction depends on the nearby 
instructions: opcode, operands. 
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Reservation table 

A reservation table 
relates 
instructions/time to 
CPU resources. 

Resource   A B 

instr1  X 

instr2  X X 

instr3  X 

instr4   X 

time 
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Software pipelining 

Schedules instructions across loop 
iterations. 

Reduces instruction latency in iteration i 
by inserting instructions from iteration 
i+1. 
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Instruction selection 

May be several ways to implement an 
operation or sequence of operations. 

Represent operations as graphs, match 
possible instruction sequences onto 
graph. 

* 

+ 

expression templates 

* + 

* 

+ 

MUL ADD 

MADD 
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Using your compiler 

Understand various optimization levels (-
O1, -O2, etc.) 

Look at mixed compiler/assembler output.   

Modifying compiler output requires care: 

correctness; 

loss of hand-tweaked code. 
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Interpreters and JIT 

compilers 

Interpreter: translates and executes 
program statements on-the-fly. 

JIT compiler: compiles small sections of 
code into instructions during program 
execution. 
Eliminates some translation overhead. 

Often requires more memory. 

Javascript: script executed in web 
browser 
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5.6 Program level 

performance analysis 

Optimizing for: 

Execution time. 

Energy/power. 

Program size. 

Program validation and testing. 
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Program-level performance 

analysis 

 Need to understand 
performance in detail: 

Real-time behavior, not 
just typical. 

On complex platforms. 

 Program performance  
CPU performance: 

Pipeline, cache are 
windows into program. 

We must analyze the entire 
program. 
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Complexities of program 

performance 

Varies with input data: 

Different-length paths. 

Cache effects. 

Instruction-level performance variations: 

Pipeline interlocks. 

Fetch times. 
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How to measure program 

performance 

Simulate execution of the CPU. 

Makes CPU state visible. 

Measure on real CPU using timer. 

Requires modifying the program to control 
the timer. 

Measure on real CPU using logic analyzer. 

Requires events visible on the pins. 
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Program performance 

metrics 

Average-case execution time. 

Typically used in application programming. 

Worst-case execution time. 

A component in deadline satisfaction. 

Best-case execution time. 

Task-level interactions can cause best-case 
program behavior to result in worst-case 
system behavior. 
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Elements of program 

performance 

Basic program execution time formula: 

execution time = program path + instruction timing 

Solving these problems independently helps 
simplify analysis. 

Easier to separate on simpler CPUs. 

Accurate performance analysis requires: 

Assembly/binary code. 

Execution platform. 
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Data-dependent paths in 

an if statement 

if (a || b) { /* T1 */ 

 if ( c ) /* T2 */ 

  x = r*s+t; /* A1 */ 

 else y=r+s; /* A2 */ 

 z = r+s+u; /* A3 */ 

 } 

else { 

 if ( c ) /* T3 */ 

  y = r-t; /* A4 */ 

} 

a b c path 

0 0 0 T1=F, T3=F: no assignments 

0 0 1 T1=F, T3=T: A4 

0 1 0 T1=T, T2=F: A2, A3 

0 1 1 T1=T, T2=T: A1, A3 

1 0 0 T1=T, T2=F: A2, A3 

1 0 1 T1=T, T2=T: A1, A3 

1 1 0 T1=T, T2=F: A2, A3 

1 1 1 T1=T, T2=T: A1, A3 
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Paths in a loop 

for (i=0, f=0; i<N; i++)  

 f = f + c[i] * x[i]; 

i=0 

f=0 

i=N 

f = f + c[i] * x[i] 

i = i + 1 

N 

Y 
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Instruction timing 

 Not all instructions take the same amount of time. 

Multi-cycle instructions. 

Fetches. 

 Execution times of instructions are not independent. 

Pipeline interlocks. 

Cache effects. 

 Execution times may vary with operand value. 

Floating-point operations. 

Some multi-cycle integer operations. 
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Mesaurement-driven 

performance analysis 

Not so easy as it sounds: 

Must actually have access to the CPU. 

Must know data inputs that give worst/best 
case performance. 

Must make state visible. 

Still an important method for performance 
analysis. 
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Feeding the program 

Need to know the desired input values. 

May need to write software scaffolding to 
generate the input values. 

Software scaffolding may also need to 
examine outputs to generate feedback-
driven inputs. 
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Trace-driven measurement 

Trace-driven: 

Instrument the program. 

Save information about the path. 

Requires modifying the program. 

Trace files are large. 

Widely used for cache analysis. 
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Physical measurement 

In-circuit emulator allows tracing. 

Affects execution timing. 

Logic analyzer can measure behavior at pins. 

Address bus can be analyzed to look for events. 

Code can be modified to make events visible. 

Particularly important for real-world input 
streams. 
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CPU simulation 

Some simulators are less accurate. 

Cycle-accurate simulator provides 
accurate clock-cycle timing. 

Simulator models CPU internals. 

Simulator writer must know how CPU works. 
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SimpleScalar FIR filter 

simulation 

int x[N] = {8, 17, … }; 

int c[N] = {1, 2, … }; 

main() { 

 int i, k, f; 

 for (k=0; k<COUNT; k++) 

  for (i=0, f=0 ; i<N; i++) 

   f += c[i]*x[i]; 

} 

N total sim 
cycles 
 

sim cycles 
per filter 
execution 

100 25854 259 

1,000 155759 156 

1,0000 1451840 145 

Loop set up: 1 

Loop test:     N+1 
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Performance optimization 

motivation 

Embedded systems must often meet 
deadlines. 

Faster may not be fast enough. 

Need to be able to analyze execution 
time. 

Worst-case, not typical. 

Need techniques for reliably improving 
execution time. 
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Programs and performance 

analysis 

Best results come from analyzing 
optimized instructions, not high-level 
language code: 

non-obvious translations of HLL statements 
into instructions; 

code may move; 

cache effects are hard to predict. 
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Loop optimizations 

Loops are good targets for optimization 

Why? 

Basic loop optimizations: 

code motion; 

induction-variable elimination; 

strength reduction (x*2 -> x<<1). 
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Code motion 

for (i=0; i<N*M; i++) 

 z[i] = a[i] + b[i]; 

i<N*M 

i=0; 

z[i] = a[i] + b[i]; 

i = i+1; 

N 

Y 

i<X 

i=0; X = N*M 

Performed (NM-1) times 
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Induction variable elimination 

 Induction variable: its value is derived form the loop 
index. 

 Consider loop: 

for (i=0; i<N; i++) 

 for (j=0; j<M; j++) 

  z[i,j] = b[i,j]; 

 Rather than recompute i*M+j for each array in each 
iteration, share induction variable between arrays, 
increment at end of loop body. 
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Strength reduction 

for (i=0; i<N; i++) 

 for (j=0; j<M; j++) 

   zbinduct = i*M + j; 

  *(zptr + zbinduct) = *(bptr + zbinduct); 

 Better code with strength reduction 

     xbinduct = 0; 

for (i=0; i<N; i++) 

 for (j=0; j<M; j++) { 

    *(zptr + zbinduct) = *(bptr + zbinduct); 

      zbinduct++; 

   } 

} 
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Cache analysis 

Loop nest: set of loops, one inside other. 

Perfect loop nest: no conditionals in nest. 

Because loops use large quantities of 
data, cache conflicts are common. 
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Array conflicts in cache 

a[0,0] 

b[0,0] 

main memory cache 

1024 4099 

... 

1024 

4099 
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Array conflicts, cont’d. 

Array elements conflict because they are 
in the same line, even if not mapped to 
same location. 

Solutions: 

move one array; 

pad array. 
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Performance optimization 

hints 

Use registers efficiently. 

Use page mode memory accesses. 

Analyze cache behavior: 

instruction conflicts can be handled by 
rewriting code, rescheudling; 

conflicting scalar data can easily be moved; 

conflicting array data can be moved, padded. 
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Energy/power optimization 

Energy: ability to do work. 

Most important in battery-powered systems. 

Power: energy per unit time. 

Important even in wall-plug systems---power 
becomes heat. 
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Overheads for Computers as 

Components 2nd ed. 

Measuring energy 

consumption 

Execute a small loop, measure current: 

while (TRUE) 

a(); 

I 
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Sources of energy 

consumption 

Relative energy per operation (Catthoor et 
al): 

memory transfer: 33 

external I/O: 10 

SRAM write: 9 

SRAM read: 4.4 

multiply: 3.6 

add: 1 
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Cache behavior is 

important 

Energy consumption has a sweet spot as 
cache size changes: 

cache too small: program thrashes, burning 
energy on external memory accesses; 

cache too large: cache itself burns too much 
power. 
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Cache sweet spot 

[Li98] ©  1998 IEEE 
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Optimizing for energy 

First-order optimization: 

high performance = low energy. 

Not many instructions trade speed for 
energy. 



Computers as Components 73 

Optimizing for energy, 

cont’d. 

Use registers efficiently. 

Identify and eliminate cache conflicts. 

Moderate loop unrolling eliminates some 
loop overhead instructions. 

Eliminate pipeline stalls. 

Inlining procedures may help: reduces 
linkage, but may increase cache 
thrashing. 
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Efficient loops 

General rules: 

Don’t use function calls. 

Keep loop body small to enable local repeat 
(only forward branches). 

Use unsigned integer for loop counter. 

Use <= to test loop counter. 

Make use of compiler---global optimization, 
software pipelining. 
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Optimizing for program size 

Goal: 

reduce hardware cost of memory; 

reduce power consumption of memory units. 

Two opportunities: 

data; 

instructions. 
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Data size minimization 

Reuse constants, variables, data buffers in 
different parts of code. 

Requires careful verification of correctness. 

Generate data using instructions. 
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Reducing code size 

Avoid function inlining. 

Choose CPU with compact instructions. 

Use specialized instructions where 
possible. 
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Program validation and 

testing 

But does it work? 

Concentrate here on functional 
verification. 

Major testing strategies: 

Black box doesn’t look at the source code. 

Clear box (white box) does look at the 
source code. 
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Clear-box testing 

Examine the source code to determine whether 
it works: 

Can you actually exercise a path? 

Do you get the value you expect along a path? 

Testing procedure: 

Controllability: rovide program with inputs. 

Execute. 

Observability: examine outputs. 
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Controlling and observing 

programs 

firout = 0.0; 

for (j=curr, k=0; j<N; j++, k++)  

 firout += buff[j] * c[k]; 

for (j=0; j<curr; j++, k++) 

 firout += buff[j] * c[k]; 

if (firout > 100.0) firout = 100.0; 

if (firout < -100.0) firout = -100.0; 

Controllability: 

Must fill circular buffer 
with desired N values. 

Other code governs 
how we access the 
buffer. 

Observability: 

Want to examine 
firout before limit 
testing. 
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Execution paths and 

testing 

Paths are important in functional testing 
as well as performance analysis. 

In general, an exponential number of 
paths through the program. 

Show that some paths dominate others. 

Heuristically limit paths. 
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Choosing the paths to test 

Possible criteria: 

Execute every 
statement at least 
once. 

Execute every branch 
direction at least once. 

Equivalent for 
structured programs. 

Not true for gotos. 

not covered 
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Basis paths 

Approximate CDFG 
with undirected 
graph. 

Undirected graphs 
have basis paths: 

All paths are linear 
combinations of basis 
paths. 
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Cyclomatic complexity 

Cyclomatic complexity 
is a bound on the size 
of basis sets: 

e = # edges 

n = # nodes 

p = number of graph 
components 

M = e – n + 2p. 
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Branch testing 

Heuristic for testing branches. 

Exercise true and false branches of 
conditional. 

Exercise every simple condition at least once. 
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Branch testing example 

Correct: 

if (a || (b >= c)) { 
printf(“OK\n”); } 

Incorrect: 

if (a && (b >= c)) { 
printf(“OK\n”); } 

Test: 

a = F 

(b >=c) = T 

Example: 

Correct: [0 || (3 >= 
2)] = T 

Incorrect: [0 && (3 
>= 2)] = F 
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Another branch testing 

example 

Correct: 
if ((x == good_pointer) && 

x->field1 == 3)) { 
printf(“got the value\n”); 
} 

Incorrect: 
 if ((x = good_pointer) && 

x->field1 == 3)) { 
printf(“got the value\n”); 
} 

Incorrect code 
changes pointer. 

Assignment returns 
new LHS in C. 

Test that catches 
error: 

(x != good_pointer) 
&& x->field1 = 3) 
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Domain testing 

Heuristic test for 
linear inequalities. 

Test on each side + 
boundary of 
inequality. 
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Def-use pairs 

Variable def-use: 

Def when value is 
assigned (defined). 

Use when used on 
right-hand side. 

Exercise each def-use 
pair. 

Requires testing 
correct path. 
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Loop testing 

Loops need specialized tests to be tested 
efficiently. 

Heuristic testing strategy: 

Skip loop entirely. 

One loop iteration. 

Two loop iterations. 

# iterations much below max. 

n-1, n, n+1 iterations where n is max. 
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Black-box testing 

Complements clear-box testing. 

May require a large number of tests. 

Tests software in different ways. 
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Black-box test vectors 

Random tests. 

May weight distribution based on software 
specification. 

Regression tests. 

Tests of previous versions, bugs, etc. 

May be clear-box tests of previous versions. 
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How much testing is 

enough? 

Exhaustive testing is impractical. 

One important measure of test quality---bugs 
escaping into field. 

Good organizations can test software to give 
very low field bug report rates. 

Error injection measures test quality: 

Add known bugs. 

Run your tests. 

Determine % injected bugs that are caught. 
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Program design and 

analysis 

Software modem. 
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Theory of operation 

Frequency-shift keying: 

separate frequencies for 0 and 1. 

time 

0 1 
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FSK encoding 

Generate waveforms based on current bit: 

bit-controlled 

waveform 

generator 

0110101 
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FSK decoding 

A
/D

 c
o

n
v
er

te
r 
zero filter 

one filter 

detector 0 bit 

detector 1 bit 
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Transmission scheme 

Send data in 8-bit bytes. Arbitrary spacing 
between bytes. 

Byte starts with 0 start bit. 

Receiver measures length of start bit to 
synchronize itself to remaining 8 bits. 

start (0) bit 1 bit 2 bit 3 bit 8 ... 
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Requirements 

Inputs Analog sound input, reset button. 

Outputs Analog sound output, LED bit display. 

Functions Transmitter: Sends data from memory 
in 8-bit bytes plus start bit. 
Receiver: Automatically detects bytes 
and reads bits. Displays current bit on 
LED. 

Performance 1200 baud. 

Manufacturing cost Dominated by microprocessor and 
analog I/O 

Power Powered by AC. 

Physical 
size/weight 

Small desktop object. 
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Specification 

Line-in* 

input() 

Receiver 

sample-in() 

bit-out() 

1 1 

Transmitter 

bit-in() 

sample-out() 

Line-out* 

output() 

1 1 
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System architecture 

Interrupt handlers for samples: 

input and output. 

Transmitter. 

Receiver. 
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Transmitter 

Waveform generation by table lookup. 

float sine_wave[N_SAMP] = { 0.0, 0.5, 
0.866, 1, 0.866, 0.5, 0.0, -0.5, -0.866, -1.0, -
0.866,  -0.5, 0}; 

time 
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Receiver 

Filters (FIR for simplicity) use circular 
buffers to hold data. 

Timer measures bit length. 

State machine recognizes start bits, data 
bits. 
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Hardware platform 

CPU. 

A/D converter. 

D/A converter. 

Timer. 
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Component design and 

testing 

Easy to test transmitter and receiver on 
host. 

Transmitter can be verified with speaker 
outputs. 

Receiver verification tasks: 

start bit recognition; 

data bit recognition. 
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System integration and 

testing 

Use loopback mode to test components 
against each other. 

Loopback in software or by connecting D/A 
and A/D converters. 


