
Computers as Components 1

Linking

Combines several object modules into a
single executable module.

Jobs:

put modules in order;

resolve labels across modules.

Computers as Components 2

Module ordering

Code modules must be placed in absolute
positions in the memory space.

Load map or linker flags control the order
of modules.

module1

module2

module3

Computers as Components 3

Module ordering

Code modules must be placed in absolute
positions in the memory space.

Load map or linker flags control the order
of modules.

module1

module2

module3

Computers as Components 4

Linker and Loader

The linker does the symbol resolution

The loader does the program loading

Either of them can do the relocation.

Computers as Components 5

Static shared library and DLL

Computers as Components 6

Dynamic Linking

Only link/load library procedure when it is
called

Shares one copy of library among all
executing programs;

Requires procedure code to be relocatable

Automatically picks up new library versions

Computers as Components 7

Loading a Program

 Load from image file on disk into memory

1. Read header to determine segment sizes

 Validation: permission, memory requirement

2. Create virtual address space

3. Copy text and initialized data into memory

 Or set page table entries so they can be faulted in

4. Copy command line arguments on stack

5. Initialize registers (including $sp, $fp)

6. Jump to startup routine

Computers as Components 8

5.4 Basic compilation techniques

Compilation flow.

Basic statement translation.

Basic optimizations.

Interpreters and just-in-time compilers.

Computers as Components 9

Compilation

Compilation strategy (Wirth):

compilation = translation + optimization

Compiler determines quality of code:

use of CPU resources;

memory access scheduling;

code size.

Computers as Components 10

Basic compilation phases

HLL

parsing, symbol table

machine-independent

optimizations

machine-dependent

optimizations

assembly

Computers as Components 11

Statement translation and

optimization

Source code is translated into
intermediate form such as CDFG.

CDFG is transformed/optimized.

CDFG is translated into instructions with
optimization decisions.

Instructions are further optimized.

Computers as Components 12

Arithmetic expressions

a*b + 5*(c-d)

expression

DFG

* -

*

+

a b c d

5

Computers as Components 13

2

3

4

1

Arithmetic expressions

ADR r4,a

MOV r1,[r4]

ADR r4,b

MOV r2,[r4]

ADD r3,r1,r2

DFG

* -

*

+

a b c d

5

ADR r4,c

MOV r1,[r4]

ADR r4,d

MOV r5,[r4]

SUB r6,r4,r5

MUL r7,r6,#5

ADD r8,r7,r3

code

Computers as Components 14

Control code generation

if (a+b > 0)

 x = 5;

else

 x = 7;

a+b>0 x=5

x=7

Computers as Components 15

3

2 1

Control code generation

 ADR r5,a

 LDR r1,[r5]

 ADR r5,b

 LDR r2,b

 ADD r3,r1,r2

 BLE label3

a+b>0 x=5

x=7
 LDR r3,#5

 ADR r5,x

 STR r3,[r5]

 B label4

label3 LDR r3,#7

 ADR r5,x

 STR r3,[r5]

label4 ...

Computers as Components 16

Procedure linkage

Need code to:

call and return;

pass parameters and results.

Parameters and returns are passed on
stack.

Procedures with few parameters may use
registers.

Computers as Components 17

Procedure stacks

proc1
Stack growth

proc1(…) {

 proc2(…);

}

proc2

SP

stack pointer

end of current frame

FP

frame pointer

end of last frame

accessed relative to SP

Computers as Components 18

ARM procedure linkage

APCS (ARM Procedure Call Standard):

r0-r3 pass parameters into procedure. Extra
parameters are put on stack frame.

r0 holds return value.

r4-r7 hold register values.

r11 is frame pointer, r13 is stack pointer.

r10 holds limiting address on stack size to
check for stack overflows.

Computers as Components 19

Data structures

Different types of data structures use
different data layouts.

Some offsets into data structure can be
computed at compile time, others must be
computed at run time.

Computers as Components 20

One-dimensional arrays

C array name points to 0th element:

a[0]

a[1]

a[2]

a

 *(a + 2x4)

Computers as Components 21

Two-dimensional arrays

Row-major layout:

a[0,0]

a[0,1]

a[1,0]

a[1,1] = a[i*M+j]

...

M
Inner variable j varies

more quickly

Array size: a[N,M]

a[i,j]

Computers as Components 22

Two-dimensional arrays

Column-major layout: FORTRAN

a[0,0]

a[1,0]

a[0,1]

a[1,1] = a[i+j*N]

...

N

Array size: a[N,M]

a[i,j]

Computers as Components 23

Structures

Fields within structures are static offsets:

field1

field2

aptr
struct {

 int field1;

 char field2;

} mystruct;

struct mystruct a, *aptr = &a;

4 bytes

*(aptr+4)

Computers as Components 24

Expression simplification

Machine independent transformation

Constant folding:

8+1 = 9

Expression simplification:

a*b + a*c = a*(b+c)

Strength reduction:

a*2 = a<<1

Computers as Components 25

Dead code elimination

Dead code: code that never be executed

difficult to identify in general

Can be eliminated by analysis of control
flow.

a special case
#define DEBUG 0

if (DEBUG) dbg(p1);

0

dbg(p1);

1

0

Computers as Components 26

Procedure inlining

Eliminates procedure linkage overhead:

Increase code size

int foo(a,b,c) { return a + b - c;}

z = foo(w,x,y);



z = w + x + y;

Computers as Components 27

Loop transformations

Goals:

reduce loop overhead;

increase opportunities for pipelining;

Reduce pipeline stalls

improve memory system performance.

Computers as Components 28

Loop unrolling

Reduces loop overhead, enables some
other optimizations.

Expose parallelism

for (i=0; i<4; i++)

 a[i] = b[i] * c[i];


for (i=0; i<2; i++) {

 a[i*2] = b[i*2] * c[i*2];

 a[i*2+1] = b[i*2+1] * c[i*2+1];

}

Computers as Components 29

Loop fusion and distribution

Fusion combines two loops into one:
for (i=0; i<N; i++) a[i] = b[i] * 5;
for (j=0; j<N; j++) w[j] = c[j] * d[j];

 for (i=0; i<N; i++) {

 a[i] = b[i] * 5;
 w[i] = c[i] * d[i];
 }

Loop distribution breaks one loop into
two.
Both changes optimizations within loop

body.

Computers as Components 30

Loop tiling

Breaks one loop into a nest of loops.

Changes order of accesses within array.

Changes cache behavior: why?

Computers as Components 31

Loop tiling example

for (i=0; i<N; i++)

 for (j=0; j<N; j++)

 c[i] = a[i,j]*b[i];

for (i=0; i<N; i+=k)

 for (j=0; j<N; j+=k)

 for (ii=0; ii<min(i+k,n); ii++)

 for (jj=0; jj<min(j+k,N); jj++)

 c[ii] = a[ii,jj]*b[ii];

3N 3n

Computers as Components 32

Array padding

Add array elements to change mapping
into cache, which reduces conflict:

Computers as Components 33

Register allocation

Goals:

choose register to hold each variable;

determine lifespan of variable in the register.

Basic case: within basic block.

Spilling registers: problematic

Computers as Components 34

Register lifetime graph

w = a + b;

x = c + w;

y = c + d;

time

a

b

c

d

w

x

y

1 2 3

t=1

t=2

t=3

Register assignment

a r0; b r1; c r2; d r0; w r3; x r0; y r3

Computers as Components 35

Conflict graph

time

a

b

c
d
w
x
y

1 2 3

Register assignment

a r0; b r1; c r2; d r0; w r3; x r0; y r3

a b

x

w

y

c

d

Conflict graph

Minimum coring problem

Computers as Components 36

Instruction scheduling

Non-pipelined machines do not need
instruction scheduling: any order of
instructions that satisfies data
dependencies runs equally fast.

In pipelined machines, execution time of
one instruction depends on the nearby
instructions: opcode, operands.

Computers as Components 37

Reservation table

A reservation table
relates
instructions/time to
CPU resources.

Resource A B

instr1 X

instr2 X X

instr3 X

instr4 X

time

Computers as Components 38

Software pipelining

Schedules instructions across loop
iterations.

Reduces instruction latency in iteration i
by inserting instructions from iteration
i+1.

Computers as Components 39

Instruction selection

May be several ways to implement an
operation or sequence of operations.

Represent operations as graphs, match
possible instruction sequences onto
graph.

*

+

expression templates

* +

*

+

MUL ADD

MADD

Computers as Components 40

Using your compiler

Understand various optimization levels (-
O1, -O2, etc.)

Look at mixed compiler/assembler output.

Modifying compiler output requires care:

correctness;

loss of hand-tweaked code.

Computers as Components 41

Interpreters and JIT

compilers

Interpreter: translates and executes
program statements on-the-fly.

JIT compiler: compiles small sections of
code into instructions during program
execution.
Eliminates some translation overhead.

Often requires more memory.

Javascript: script executed in web
browser

Computers as Components 42

5.6 Program level

performance analysis

Optimizing for:

Execution time.

Energy/power.

Program size.

Program validation and testing.

Computers as Components 43

Program-level performance

analysis

 Need to understand
performance in detail:

Real-time behavior, not
just typical.

On complex platforms.

 Program performance 
CPU performance:

Pipeline, cache are
windows into program.

We must analyze the entire
program.

Computers as Components 44

Complexities of program

performance

Varies with input data:

Different-length paths.

Cache effects.

Instruction-level performance variations:

Pipeline interlocks.

Fetch times.

Computers as Components 45

How to measure program

performance

Simulate execution of the CPU.

Makes CPU state visible.

Measure on real CPU using timer.

Requires modifying the program to control
the timer.

Measure on real CPU using logic analyzer.

Requires events visible on the pins.

Computers as Components 46

Program performance

metrics

Average-case execution time.

Typically used in application programming.

Worst-case execution time.

A component in deadline satisfaction.

Best-case execution time.

Task-level interactions can cause best-case
program behavior to result in worst-case
system behavior.

Computers as Components 47

Elements of program

performance

Basic program execution time formula:

execution time = program path + instruction timing

Solving these problems independently helps
simplify analysis.

Easier to separate on simpler CPUs.

Accurate performance analysis requires:

Assembly/binary code.

Execution platform.

Computers as Components 48

Data-dependent paths in

an if statement

if (a || b) { /* T1 */

 if (c) /* T2 */

 x = r*s+t; /* A1 */

 else y=r+s; /* A2 */

 z = r+s+u; /* A3 */

 }

else {

 if (c) /* T3 */

 y = r-t; /* A4 */

}

a b c path

0 0 0 T1=F, T3=F: no assignments

0 0 1 T1=F, T3=T: A4

0 1 0 T1=T, T2=F: A2, A3

0 1 1 T1=T, T2=T: A1, A3

1 0 0 T1=T, T2=F: A2, A3

1 0 1 T1=T, T2=T: A1, A3

1 1 0 T1=T, T2=F: A2, A3

1 1 1 T1=T, T2=T: A1, A3

Computers as Components 49

Paths in a loop

for (i=0, f=0; i<N; i++)

 f = f + c[i] * x[i];

i=0

f=0

i=N

f = f + c[i] * x[i]

i = i + 1

N

Y

Computers as Components 50

Instruction timing

 Not all instructions take the same amount of time.

Multi-cycle instructions.

Fetches.

 Execution times of instructions are not independent.

Pipeline interlocks.

Cache effects.

 Execution times may vary with operand value.

Floating-point operations.

Some multi-cycle integer operations.

Computers as Components 51

Mesaurement-driven

performance analysis

Not so easy as it sounds:

Must actually have access to the CPU.

Must know data inputs that give worst/best
case performance.

Must make state visible.

Still an important method for performance
analysis.

Computers as Components 52

Feeding the program

Need to know the desired input values.

May need to write software scaffolding to
generate the input values.

Software scaffolding may also need to
examine outputs to generate feedback-
driven inputs.

Computers as Components 53

Trace-driven measurement

Trace-driven:

Instrument the program.

Save information about the path.

Requires modifying the program.

Trace files are large.

Widely used for cache analysis.

Computers as Components 54

Physical measurement

In-circuit emulator allows tracing.

Affects execution timing.

Logic analyzer can measure behavior at pins.

Address bus can be analyzed to look for events.

Code can be modified to make events visible.

Particularly important for real-world input
streams.

Computers as Components 55

CPU simulation

Some simulators are less accurate.

Cycle-accurate simulator provides
accurate clock-cycle timing.

Simulator models CPU internals.

Simulator writer must know how CPU works.

Computers as Components 56

SimpleScalar FIR filter

simulation

int x[N] = {8, 17, … };

int c[N] = {1, 2, … };

main() {

 int i, k, f;

 for (k=0; k<COUNT; k++)

 for (i=0, f=0 ; i<N; i++)

 f += c[i]*x[i];

}

N total sim
cycles

sim cycles
per filter
execution

100 25854 259

1,000 155759 156

1,0000 1451840 145

Loop set up: 1

Loop test: N+1

Computers as Components 57

Performance optimization

motivation

Embedded systems must often meet
deadlines.

Faster may not be fast enough.

Need to be able to analyze execution
time.

Worst-case, not typical.

Need techniques for reliably improving
execution time.

Computers as Components 58

Programs and performance

analysis

Best results come from analyzing
optimized instructions, not high-level
language code:

non-obvious translations of HLL statements
into instructions;

code may move;

cache effects are hard to predict.

Computers as Components 59

Loop optimizations

Loops are good targets for optimization

Why?

Basic loop optimizations:

code motion;

induction-variable elimination;

strength reduction (x*2 -> x<<1).

Computers as Components 60

Code motion

for (i=0; i<N*M; i++)

 z[i] = a[i] + b[i];

i<N*M

i=0;

z[i] = a[i] + b[i];

i = i+1;

N

Y

i<X

i=0; X = N*M

Performed (NM-1) times

Computers as Components 61

Induction variable elimination

 Induction variable: its value is derived form the loop
index.

 Consider loop:

for (i=0; i<N; i++)

 for (j=0; j<M; j++)

 z[i,j] = b[i,j];

 Rather than recompute i*M+j for each array in each
iteration, share induction variable between arrays,
increment at end of loop body.

Computers as Components 62

Strength reduction

for (i=0; i<N; i++)

 for (j=0; j<M; j++)

 zbinduct = i*M + j;

 *(zptr + zbinduct) = *(bptr + zbinduct);

 Better code with strength reduction

 xbinduct = 0;

for (i=0; i<N; i++)

 for (j=0; j<M; j++) {

 *(zptr + zbinduct) = *(bptr + zbinduct);

 zbinduct++;

 }

}

Computers as Components 63

Cache analysis

Loop nest: set of loops, one inside other.

Perfect loop nest: no conditionals in nest.

Because loops use large quantities of
data, cache conflicts are common.

Computers as Components 64

Array conflicts in cache

a[0,0]

b[0,0]

main memory cache

1024 4099

...

1024

4099

Computers as Components 65

Array conflicts, cont’d.

Array elements conflict because they are
in the same line, even if not mapped to
same location.

Solutions:

move one array;

pad array.

Computers as Components 66

Performance optimization

hints

Use registers efficiently.

Use page mode memory accesses.

Analyze cache behavior:

instruction conflicts can be handled by
rewriting code, rescheudling;

conflicting scalar data can easily be moved;

conflicting array data can be moved, padded.

Computers as Components 67

Energy/power optimization

Energy: ability to do work.

Most important in battery-powered systems.

Power: energy per unit time.

Important even in wall-plug systems---power
becomes heat.

Computers as Components 68 © 2008 Wayne Wolf

Overheads for Computers as

Components 2nd ed.

Measuring energy

consumption

Execute a small loop, measure current:

while (TRUE)

a();

I

Computers as Components 69

Sources of energy

consumption

Relative energy per operation (Catthoor et
al):

memory transfer: 33

external I/O: 10

SRAM write: 9

SRAM read: 4.4

multiply: 3.6

add: 1

Computers as Components 70

Cache behavior is

important

Energy consumption has a sweet spot as
cache size changes:

cache too small: program thrashes, burning
energy on external memory accesses;

cache too large: cache itself burns too much
power.

Computers as Components 71

Cache sweet spot

[Li98] © 1998 IEEE

Computers as Components 72

Optimizing for energy

First-order optimization:

high performance = low energy.

Not many instructions trade speed for
energy.

Computers as Components 73

Optimizing for energy,

cont’d.

Use registers efficiently.

Identify and eliminate cache conflicts.

Moderate loop unrolling eliminates some
loop overhead instructions.

Eliminate pipeline stalls.

Inlining procedures may help: reduces
linkage, but may increase cache
thrashing.

Computers as Components 74

Efficient loops

General rules:

Don’t use function calls.

Keep loop body small to enable local repeat
(only forward branches).

Use unsigned integer for loop counter.

Use <= to test loop counter.

Make use of compiler---global optimization,
software pipelining.

Computers as Components 75

Optimizing for program size

Goal:

reduce hardware cost of memory;

reduce power consumption of memory units.

Two opportunities:

data;

instructions.

Computers as Components 76

Data size minimization

Reuse constants, variables, data buffers in
different parts of code.

Requires careful verification of correctness.

Generate data using instructions.

Computers as Components 77

Reducing code size

Avoid function inlining.

Choose CPU with compact instructions.

Use specialized instructions where
possible.

Computers as Components 78

Program validation and

testing

But does it work?

Concentrate here on functional
verification.

Major testing strategies:

Black box doesn’t look at the source code.

Clear box (white box) does look at the
source code.

Computers as Components 79

Clear-box testing

Examine the source code to determine whether
it works:

Can you actually exercise a path?

Do you get the value you expect along a path?

Testing procedure:

Controllability: rovide program with inputs.

Execute.

Observability: examine outputs.

Computers as Components 80

Controlling and observing

programs

firout = 0.0;

for (j=curr, k=0; j<N; j++, k++)

 firout += buff[j] * c[k];

for (j=0; j<curr; j++, k++)

 firout += buff[j] * c[k];

if (firout > 100.0) firout = 100.0;

if (firout < -100.0) firout = -100.0;

Controllability:

Must fill circular buffer
with desired N values.

Other code governs
how we access the
buffer.

Observability:

Want to examine
firout before limit
testing.

Computers as Components 81

Execution paths and

testing

Paths are important in functional testing
as well as performance analysis.

In general, an exponential number of
paths through the program.

Show that some paths dominate others.

Heuristically limit paths.

Computers as Components 82

Choosing the paths to test

Possible criteria:

Execute every
statement at least
once.

Execute every branch
direction at least once.

Equivalent for
structured programs.

Not true for gotos.

not covered

Computers as Components 83

Basis paths

Approximate CDFG
with undirected
graph.

Undirected graphs
have basis paths:

All paths are linear
combinations of basis
paths.

Computers as Components 84

Cyclomatic complexity

Cyclomatic complexity
is a bound on the size
of basis sets:

e = # edges

n = # nodes

p = number of graph
components

M = e – n + 2p.

Computers as Components 85

Branch testing

Heuristic for testing branches.

Exercise true and false branches of
conditional.

Exercise every simple condition at least once.

Computers as Components 86

Branch testing example

Correct:

if (a || (b >= c)) {
printf(“OK\n”); }

Incorrect:

if (a && (b >= c)) {
printf(“OK\n”); }

Test:

a = F

(b >=c) = T

Example:

Correct: [0 || (3 >=
2)] = T

Incorrect: [0 && (3
>= 2)] = F

Computers as Components 87

Another branch testing

example

Correct:
if ((x == good_pointer) &&

x->field1 == 3)) {
printf(“got the value\n”);
}

Incorrect:
 if ((x = good_pointer) &&

x->field1 == 3)) {
printf(“got the value\n”);
}

Incorrect code
changes pointer.

Assignment returns
new LHS in C.

Test that catches
error:

(x != good_pointer)
&& x->field1 = 3)

Computers as Components 88

Domain testing

Heuristic test for
linear inequalities.

Test on each side +
boundary of
inequality.

Computers as Components 89

Def-use pairs

Variable def-use:

Def when value is
assigned (defined).

Use when used on
right-hand side.

Exercise each def-use
pair.

Requires testing
correct path.

Computers as Components 90

Loop testing

Loops need specialized tests to be tested
efficiently.

Heuristic testing strategy:

Skip loop entirely.

One loop iteration.

Two loop iterations.

# iterations much below max.

n-1, n, n+1 iterations where n is max.

Computers as Components 91

Black-box testing

Complements clear-box testing.

May require a large number of tests.

Tests software in different ways.

Computers as Components 92

Black-box test vectors

Random tests.

May weight distribution based on software
specification.

Regression tests.

Tests of previous versions, bugs, etc.

May be clear-box tests of previous versions.

Computers as Components 93

How much testing is

enough?

Exhaustive testing is impractical.

One important measure of test quality---bugs
escaping into field.

Good organizations can test software to give
very low field bug report rates.

Error injection measures test quality:

Add known bugs.

Run your tests.

Determine % injected bugs that are caught.

Computers as Components 94

Program design and

analysis

Software modem.

Computers as Components 95

Theory of operation

Frequency-shift keying:

separate frequencies for 0 and 1.

time

0 1

Computers as Components 96

FSK encoding

Generate waveforms based on current bit:

bit-controlled

waveform

generator

0110101

Computers as Components 97

FSK decoding

A
/D

 c
o

n
v
er

te
r
zero filter

one filter

detector 0 bit

detector 1 bit

Computers as Components 98

Transmission scheme

Send data in 8-bit bytes. Arbitrary spacing
between bytes.

Byte starts with 0 start bit.

Receiver measures length of start bit to
synchronize itself to remaining 8 bits.

start (0) bit 1 bit 2 bit 3 bit 8 ...

Computers as Components 99

Requirements

Inputs Analog sound input, reset button.

Outputs Analog sound output, LED bit display.

Functions Transmitter: Sends data from memory
in 8-bit bytes plus start bit.
Receiver: Automatically detects bytes
and reads bits. Displays current bit on
LED.

Performance 1200 baud.

Manufacturing cost Dominated by microprocessor and
analog I/O

Power Powered by AC.

Physical
size/weight

Small desktop object.

Computers as Components 100

Specification

Line-in*

input()

Receiver

sample-in()

bit-out()

1 1

Transmitter

bit-in()

sample-out()

Line-out*

output()

1 1

Computers as Components 101

System architecture

Interrupt handlers for samples:

input and output.

Transmitter.

Receiver.

Computers as Components 102

Transmitter

Waveform generation by table lookup.

float sine_wave[N_SAMP] = { 0.0, 0.5,
0.866, 1, 0.866, 0.5, 0.0, -0.5, -0.866, -1.0, -
0.866, -0.5, 0};

time

Computers as Components 103

Receiver

Filters (FIR for simplicity) use circular
buffers to hold data.

Timer measures bit length.

State machine recognizes start bits, data
bits.

Computers as Components 104

Hardware platform

CPU.

A/D converter.

D/A converter.

Timer.

Computers as Components 105

Component design and

testing

Easy to test transmitter and receiver on
host.

Transmitter can be verified with speaker
outputs.

Receiver verification tasks:

start bit recognition;

data bit recognition.

Computers as Components 106

System integration and

testing

Use loopback mode to test components
against each other.

Loopback in software or by connecting D/A
and A/D converters.

