Linking

Combines several object modules into a
single executable module.

Jobs:

put modules in order;
resolve labels across modules.

Computers as Components

Module ordering

Code modules must be placed in absolute
positions in the memory space.

Load map or linker flags control the order
of modules.

modulel

module2

module3

Computers as Components

Module ordering

Code modules must be placed in absolute
positions in the memory space.

Load map or linker flags control the order
of modules.

modulel

module2

module3

Computers as Components

Linker and Loader

"he linker does the symbol resolution
"he loader does the program loading
Either of them can do the relocation.

Computers as Components

Static shared library and DLL

When different programs are running on a
computer, those different programs usually turn out
to share a lot of common code.

Nearly every C program uses routines such as fopen, and printf.

Frograms running under a GUI such as X Windows, or MS Windows all
use pieces of the GUI library.

Most systems now provide shared libraries for programs to use, so all
the programs that use a library can share a single copy of it.

Static shared library

* The linker binds program references to library routines to those specific
addresses at link time.

Dynamic linked library

* Library sections and symbols are not bound to actual addresses until
the program that uses the library starts running.

Computers as Components

Dynamic Linking

Only link/load library procedure when it is
called

Shares one copy of library among all
executing programs;

Requires procedure code to be relocatable
Automatically picks up new library versions

Computers as Components

Loading a Program

Load from image file on disk into memory

Read header to determine segment sizes
Validation: permission, memory requirement

2. Create virtual address space

3. Copy text and initialized data into memory
Or set page table entries so they can be faulted in

4. Copy command line arguments on stack
5. Initialize registers (including $sp, $fp)
6. Jump to startup routine

Computers as Components

5.4 Basic compilation techniques

Compilation flow.

Basic statement translation.

Basic optimizations.

Interpreters and just-in-time compilers.

Computers as Components 8

Compilation

Compilation strategy (Wirth):
compilation = translation + optimization

Compiler determines quality of code:
use of CPU resources;
memory access scheduling;
code size.

Computers as Components

Basic compilation phases

parsing, symbol table

machine-independent
optimizations

machine-dependent
optimizations

Computers as Components

10

Statement translation and
optimization

Source code is translated into
intermediate form such as CDFG.

CDFG is transformed/optimized.

CDFG is translated into instructions with
optimization decisions.

Instructions are further optimized.

Computers as Components

11

Arithmetic expressions

a*b + 5%(c-d) a b

expression

14

DFG

Computers as Components

12

Arithmetic expressions

a b c

ADD r8,r7,r3

DFG code

Computers as Components

13

Control code generation

if (a+b > 0)
X =D5;
else
X=17;

< a+b>0

» X=5

X=/

Computers as Components

14

Control code generation

label3 LDR r3,#7
ADR r5,x
STR r3,[r5]

label4

Computers as Components

15

Procedure linkage

Need code to:

call and return;

pass parameters and results.
Parameters and returns are passed on
stack.

Procedures with few parameters may use
registers.

Computers as Components

16

Procedure stacks

Stack growth

FP —

frame pointer
end of last frame

SP —

stack pointer
end of current frame

procl

proc2

procl(...) {
proc2(...);
}

} accessed relative to SP

Computers as Components 17

ARM procedure linkage

APCS (ARM Procedure Call Standard):

r0-r3 pass parameters into procedure. Extra
parameters are put on stack frame.

rO holds return value.
r4-r7 hold register values.
r11 is frame pointer, r13 is stack pointer.

r10 holds limiting address on stack size to
check for stack overflows.

Computers as Components 18

Data structures

Different types of data structures use
different data layouts.

Some offsets into data structure can be
computed at compile time, others must be
computed at run time.

Computers as Components 19

One-dimensional arrays

C array name points to Oth element:

a[2] *(a + 2x4)

Computers as Components

20

Two-dimensional arrays

Row-major layout: alill

Inner variable j varies
more quickly

Array size: a[N,M]

a[0,0]

a[0,1]

a[1,0]

a[l1,1]

Computers as Components

= a[i*M+i]

21

Two-dimensional arrays

Column-major layout: all.ll FORTRAN
a0,0] |
a[1,0] - N
a[0,1]
a[1,1] = a[i+)*N]
Array size: a[N,M]

Computers as Components 22

Structures

Fields within structures are static offsets:

aptr ——
struct { fiald1
int field?: eld
char field?; _
} mystruct; field2

struct mystruct a, *aptr = &a;

Computers as Components

4 bytes

— *(aptr+4)

23

Expression simplification

Machine independent transformation

Constant folding:
8+1 =9
Expression simplification:
a*b + a*c = a*(b+c)
Strength reduction:
a*2 = a<<l1

Computers as Components

24

Dead code elimination

Dead code: code that never be executed

difficult to identify in general

Can be eliminated by analysis of control
flow.

a special case
#define DEBUG 0
if (DEBUG) dbg(p1); Ly,

Computers as Components 25

Procedure inlining

Eliminates procedure linkage overhead:
Increase code size

int foo(a,b,c) { returna + b -¢;}
z = foo(w,X,Y);
=

Z=W+X+Yy;

Computers as Components

26

Loop transformations

Goals:
reduce loop overhead;

increase opportunities for pipelining;
Reduce pipeline stalls

improve memory system performance.

Computers as Components

27

Loop unrolling

Reduces loop overhead, enables some
other optimizations.

Expose parallelism

for (i=0; i<4; i++)
ali] = b[i] * c[i];

D

for (i=0; i<2; i++) {
a[i*2] = b[i*2] * c[i*2];
a[i*2+1] = b[i*2+1] * c[i*2+1];

} Computers as Components

28

Loop fusion and distribution

Fusion combines two loops into one:
for (i=0; i<N; i++) a[i] = b[i] * 5;
for (j=0; j<N; j++) wlj] = c[j] * d[j];
= for (i=0; i<N; i++) {
ali] = b[i] * 5;
wli] = c[i] * d[il;
}
Loop distribution breaks one loop into
two.

Both changes optimizations within loop
body.

Computers as Components 29

Loop tiling

Breaks one loop into a nest of loops.

Changes order of accesses within array.
Changes cache behavior: why?

Computers as Components

30

Loop tiling example

for (i=0; i<N; i++)
for (j=0; j<N; j++)
c[i] = a[i,jI*bli];

3N

for (i=0; i<N; i+=k)
for (j=0; j<N; j+=k)

for (ii=0; ii<min(i+k,n); ii++)
for (jj=0; jj<min(j+k,N); jj++)

cfii] = alii,jj]*blii];

------ » »

Computers as Components

3n

31

Array padding

Add array elements to change mapping
into cache, which reduces conflict:

Cache
Memory
8 & B
U oarmay #1 Coaray #2 . arra}: #1
&ap &ap

Computers as Components

Register allocation

Goals:
choose register to hold each variable;
determine lifespan of variable in the register.

Basic case: within basic block.
Spilling registers: problematic

Computers as Components 33

Register lifetime graph

wW=a+b; t=1 . =
X=C+ W, t=2 b]
yv=c+d: t=3 c]
d]
W]
X
y - []
| | |
1 2 3 time

Register assignment
arO;brl;cr2;drO;wr3; xr0;yr3

Computers as Components 34

‘<><§Q_O o o

Conflict graph

‘ b
[] :
[Conflict graph
L]
L]
L]
L]
[]
| | | g
1 2 3 time
d
Register assignment o _
ar0;bri;cr2;drO;wr3; xr0;yr3 Minimum coring problem

Computers as Components 35

Instruction scheduling

Non-pipelined machines do not need
instruction scheduling: any order of
instructions that satisfies data
dependencies runs equally fast.

In pipelined machines, execution time of
one instruction depends on the nearby
instructions: opcode, operands.

Computers as Components 36

Reservation table

A reservation table

relates Resource| A
instructions/time to instrl X
CPU resources. instr2 X
Instr3 X

| instr4

time

Computers as Components

37

Software pipelining

Schedules instructions across loop
iterations.

Reduces instruction latency in iteration i
by inserting instructions from iteration
I+1.

Computers as Components

38

Instruction selection

May be several ways to implement an
operation or sequence of operations.

Represent operations as graphs, match
possible instruction sequences onto

graph.
N N/ N N
. ® ® & ¥
(*) MUL ADD (*)

expression templates mADD

Computers as Components 39

Using your compiler

Understand various optimization levels (-
01, -02, etc.)

Look at mixed compiler/assembler output.

Modifying compiler output requires care:
correctness;
loss of hand-tweaked code.

Computers as Components 40

Interpreters and JIT
compilers

Interpreter: translates and executes
program statements on-the-fly.

JIT compiler: compiles small sections of
code into instructions during program
execution.

Eliminates some translation overhead.
Often requires more memory.

Javascript: script executed in web
browser

Computers as Components 41

5.6 Program level
performance analysis

Optimizing for:
Execution time.
Energy/power.
Program size.

Program validation and testing.

Computers as Components

42

Program-level performance
analysis

Need to understand
performance in detail:

Real-time behavior, not »é
just typical. ®

On complex platforms.

\12/7@—"
Program performance = -

C P U pe rfO I m a N Ce . total execution time -

Pipeline, cache are
windows into program.

We must analyze the entire
program.

pipeline 7!

Computers as Components 43

Complexities of program
performance

Varies with input data:
Different-length paths.

Cache effects.
Instruction-level performance variations:

Pipeline interlocks.
Fetch times.

Computers as Components 44

How to measure program
performance

Simulate execution of the CPU.
Makes CPU state visible.

Measure on real CPU using timer,

Requires modifying the program to control
the timer.

Measure on real CPU using logic analyzer.
Requires events visible on the pins.

Computers as Components 45

Program performance
metrics

Average-case execution time.

Typically used in application programming.
Worst-case execution time.

A component in deadline satisfaction.

Best-case execution time.

Task-level interactions can cause best-case
program behavior to result in worst-case
system behavior.

Computers as Components 46

Elements of program
performance

Basic program execution time formula:
execution time = program path + instruction timing
Solving these problems independently helps
simplify analysis.
Easier to separate on simpler CPUs.
Accurate performance analysis requires:

Assembly/binary code.
Execution platform.

Computers as Components 47

Data-dependent paths in
an if statement

if (@[l b) {/*T1%
if (c)/*T2%/

X = r¥s+t; /* Al */

else y=r+s; /* A2 */
Z = r+s+u; [* A3 */
y
else {
if (c)/*T3*/
y =rt [*Ad ¥/

a lblc
0 0 O
0 0 1
0 1 O
0 1 1
1 0 O
1 0 1
1 1 0
1 1 1

Computers as Components

T1=F, T3=F: no assighments

T1=F T3=T: A4

T1=T, T2=F: A2, A3
T1=T, T2=T: A1, A3
T1=T, T2=F: A2, A3
T1=T, T2=T: A1, A3
T1=T, T2=F: A2, A3
T1=T, T2=T: A1, A3

48

Paths in a loop

for (i=0, f=0; i<N; i++)
f=f+ c[i] * x[i];

Computers as Components

49

Instruction timing

Not all instructions take the same amount of time.
Multi-cycle instructions.
Fetches.

Execution times of instructions are not independent.
Pipeline interlocks.
Cache effects.

Execution times may vary with operand value.
Floating-point operations.
Some multi-cycle integer operations.

Computers as Components

50

Mesaurement-driven
performance analysis

Not so easy as it sounds:
Must actually have access to the CPU.

Must know data inputs that give worst/best
case performance.

Must make state visible.

Still an important method for performance
analysis.

Computers as Components 51

Feeding the program

Need to know the desired input values.

May need to write software scaffolding to
generate the input values.

Software scaffolding may also need to
examine outputs to generate feedback-
driven inputs.

Computers as Components 52

Trace-driven measurement

Trace-driven:
Instrument the program.
Save information about the path.

Requires modifying the program.
Trace files are large.
Widely used for cache analysis.

Computers as Components 53

Physical measurement

In-circuit emulator allows tracing.
Affects execution timing.

Logic analyzer can measure behavior at pins.

Address bus can be analyzed to look for events.
Code can be modified to make events visible.

Particularly important for real-world input
streams.

Computers as Components

54

CPU simulation

Some simulators are less accurate.

Cycle-accurate simulator provides
accurate clock-cycle timing.

Simulator models CPU internals.

Simulator writer must know how CPU works.

Computers as Components 55

SimpleScalar FIR filter
simulation

int Xx[N] =48, 17, ... }; total sim sim cycles
int c[N] = {1, 2, ... }: cycles per filtgr
execution

main() {

S 100 25854 259

:cnt "k’o’ <COUNT: k 1,000 155759 156
=0; k< - k++

or (k=0; ’) 1,0000 1451840 145

for (i=0, f=0 ; i<N; i++)
f += c[i]*x[i];

Loop set up: 1
Loop test: N+1

Computers as Components 56

Performance optimization
motivation

Embedded systems must often meet
deadlines.

Faster may not be fast enough.

Need to be able to analyze execution
time.

, hot typical.

Need techniques for reliably improving
execution time.

Computers as Components 57

Programs and performance
analysis

Best results come from analyzing
optimized instructions, not high-level
language code:

non-obvious translations of HLL statements
Into instructions;

code may move;
cache effects are hard to predict.

Computers as Components 58

Loop optimizations

Loops are good targets for optimization
Why?

Basic loop optimizations:
code motion;

induction-variable elimination;
strength reduction (x*2 -> x<<1).

Computers as Components

59

Code motion

for (i=0; i i++)

z[i] = ali] + b[il; ,

Z[i] = a[1] + b[i];

Performed (NM-1) times

Computers as Components

| = 1+1;

60

Induction variable elimination

Induction variable: its value is derived form the loop
index.

Consider loop:
for (i=0; i<N; i++)
for (j=0; j<M; j++)
z[i,j] = bli,jl;
Rather than recompute i*M+j for each array in each

iteration, share induction variable between arrays,
increment at end of loop body.

Computers as Components 61

Strength reduction

for (i=0; i<N; i++)
for (j=0; j<M; j++)

zbinduct = i*M + j;

*(zptr + zbinduct) = *(bptr + zbinduct);
Better code with strength reduction
xbinduct = 0;
for (i=0; i<N; i++)

for (j=0; j<M; j++) {

*(zptr + zbinduct) = *(bptr + zbinduct);

zbinduct++;

}
}

Computers as Components

62

Cache analysis

Loop nest: set of loops, one inside other.
Perfect loop nest: no conditionals in nest.

Because loops use large quantities of
data, cache conflicts are common.

Computers as Components

63

Array conflicts in cache

0011024 +—

~>
1024 4099

b[0.0171 4099 +—

main memory cache

Computers as Components 64

Array conflicts, cont’d.

Array elements conflict because they are
in the same line, even if not mapped to
same location.

Solutions:
move one array;
pad array.

Computers as Components

65

Performance optimization
hints

Use registers efficiently.
Use page mode memory accesses.

Analyze cache behavior:

instruction conflicts can be handled by
rewriting code, rescheudling;

conflicting scalar data can easily be moved;
conflicting array data can be moved, padded.

Computers as Components 66

Energy/power optimization

Energy: ability to do work.
Most important in battery-powered systems.

Power: energy per unit time.

Important even in wall-plug systems---power
becomes heat.

Computers as Components 67

Measuring energy
consumption

Execute a small loop, measure current:

— |

— while (TRUE)
a();

Overheads for Computers as
© 2008 Wayne Wolf Congmrtgrsreesn@azithedents

Sources of energy
consumption

Relative energy per operation (Catthoor et
al):

memory transfer: 33

external I/O: 10

SRAM write: 9

SRAM read: 4.4

multiply: 3.6

add: 1

Computers as Components 69

Cache behavior is
important

Energy consumption has a sweet spot as
cache size changes:

cache too small: program thrashes, burning
energy on external memory accesses;

cache too large: cache itself burns too much
power.

Computers as Components

70

icache size [2**val]

dcache size [2**val]

Cache sweet spot

LL
LL
L
o8]
o))
(©))
—i
©
—
o8]
o
-
—

71

Computers as Components

Optimizing for energy

First-order optimization:
high performance = low energy.

Not many instructions trade speed for
energy.

Computers as Components

72

Optimizing for energy,
cont’d.

Use registers efficiently.
Identify and eliminate cache conflicts.

Moderate loop unrolling eliminates some
loop overhead instructions.

Eliminate pipeline stalls.

Inlining procedures may help: reduces
linkage, but may increase cache
thrashing.

Computers as Components 73

Efficient loops

General rules:
Don’t use function calls.

Keep loop body small to enable local repeat
(only forward branches).

Use unsigned integer for loop counter.
Use <= to test loop counter.

Make use of compiler---global optimization,
software pipelining.

Computers as Components

74

Optimizing for program size

Goal:

reduce hardware cost of memory;

reduce power consumption of memory units.
wo opportunities:

data;
Instructions.

Computers as Components 75

Data size minimization

Reuse constants, variables, data buffers in
different parts of code.

Requires careful verification of correctness.
Generate data using instructions.

Computers as Components 76

Reducing code size

Avoid function inlining.

Choose CPU with compact instructions.

Use specialized instructions where
possible.

Computers as Components

77

Program validation and
testing

But does it work?

Concentrate here on functional
verification.
Major testing strategies:

Black box doesn’t look at the source code.

Clear box (white box) does look at the
source code.

Computers as Components 78

Clear-box testing

Examine the source code to determine whether
it works:

Can you actually exercise a path?

Do you get the value you expect along a path?
Testing procedure:

Controllability: rovide program with inputs.

Execute.

Observability: examine outputs.

Computers as Components

79

Controlling and observing
programs

firout = 0.0; Controllability:
for (j=curr, k=0; j<N; j++, k++) .
firout += buff[j] * c[K]; Must fill circular buffer
for (J=0/ j<curr; j++, k++) Wlth dESIl’ed N Va|UeS.
firout += buff[j] * c[k]; Other code governs
if (firout > 100.0) firout = 100.0; how we access the
if (firout < -100.0) firout = -100.0; buffer.

Observability:

Want to examine
firout before limit
testing.

Computers as Components 80

Execution paths and
testing

Paths are important in functional testing
as well as performance analysis.

In general, an exponential number of
paths through the program.
Show that some paths dominate others.
Heuristically limit paths.

Computers as Components

81

Choosing the paths to test

Possible criteria:

Execute every
statement at least
once.

Execute every branch
direction at least once.

Equivalent for
structured programs.

Not true for gotos.

not covered

Computers as Components 82

Basis paths

Approximate CDFG

with undirected « Toorod
graph. Z
Undirected graphs R
have basis paths: C eod
All paths are linear S N
combinations of basis Graph * loooor
paths. Basis set

Computers as Components 83

Cyclomatic complexity

Cyclomatic complexity
IS @ bound on the size

of basis sets:
e = # edges
n = # nodes

p = number of graph

components
M=e-n+ 2p.

—_ — =

Computers as Components

VG)=8—-6+2=4

84

Branch testing

Heuristic for testing branches.

Exercise true and false branches of
conditional.

Exercise every simple condition at least once.

Computers as Components 85

Branch testing example

Correct: Test:
if (@]| (b>=c)){ a=F
printf("OKLIN"); } (b>=c)=T
Incorrect: Examp|e:
if (@ && (b >=¢)) { Correct: [0 || (3 >=
printf("OKLCIn"); } D] =T

Incorrect: [0 && (3
>=2)] =F

Computers as Components

86

Another branch testing
example

Correct: Incorrect code
if (x == good_pointer) & changes pointer.

x->fieldl == 3)) { :
orintf(“got the value[Jey: Assignment returns

1 new LHS in C.
Incorreet: Test that catches

if ((x = good_pointer) && error.

x->field] == 3)) { (x = good_pointer)

grlntf(got the valueldn"); && x->fieldl = 3)

Computers as Components

87

Domain testing

Heuristic test for
linear inequalities.

Test on each side +
boundary of b e eiages
inequality.

Correct test

Computers as Components

i=3,j=5
® @ =4j=5
i=1,j=2
® J
Jj<=2i+1
|
i
i=3,j=5
® O i=4j=5
@ =1j=2
j>=i-1
|
i
Incorrect tests

88

Def-use pa

Variable def-use

Irs

Def when value is a. mypointer;
assigned (defined). A
while (a->field1 !'= vall)
Use when used on A2 onext:
right-hand side. }
Exercise each def-use if (a->field2' <= val2)

pair.

Requires testing
correct path.

someproc(a,b);

Computers as Components

89

Loop testing

Loops need specialized tests to be tested
efficiently.

Heuristic testing strategy:
Skip loop entirely.
One loop iteration.
Two loop iterations.
iterations much below max.
n-1, n, n+1 iterations where n is max.

Computers as Components

Black-box testing

Complements clear-box testing.

May require a large number of tests.

Tests software in different ways.

Computers as Components

91

Black-box test vectors

Random tests.

May weight distribution based on software
specification.

Regression tests.

Tests of previous versions, bugs, etc.
May be clear-box tests of previous versions.

Computers as Components 92

How much testing is
enough?

Exhaustive testing is impractical.

One important measure of test quality---bugs
escaping into field.

Good organizations can test software to give
very low field bug report rates.

Error injection measures test quality:

Add known bugs.
Run your tests.
Determine % injected bugs that are caught.

Computers as Components

93

Program designh and
analysis

Software modem.

Computers as Components

94

Theory of operation

Frequency-shift keying:
separate frequencies for 0 and 1.
0 , 1

-/

Computers as Components

time

95

FSK encoding

Generate waveforms based on current bit:

0110101

—_—»

bit-controlled
waveform
generator

Computers as Components

96

FSK decoding

| -
D
-+
| -
(D)
=
-
@)
(&)
0
=~
<

zero filter

detector

— 0 bit

one filter

detector

— 1 bit

Computers as Components

97

Transmission scheme

Send data in 8-bit bytes. Arbitrary spacing
between bytes.

Byte starts with 0 start bit.

Receiver measures length of start bit to
synchronize itself to remaining 8 bits.

—{start (0)| bitl | bit2 | bit3 | .. | bit8 ——

Computers as Components 98

Requirements

Inputs
Outputs

Functions

Performance
Manufacturing cost
Power

Physical
size/weight

Analog sound input, reset button.
Analog sound output, LED bit display.

Transmitter: Sends data from memory
in 8-bit bytes plus start bit.

Receiver: Automatically detects bytes

and reads bits. Displays current bit on
LED.

1200 baud.

Dominated by microprocessor and
analog I/O
Powered by AC.

Small desktop object.

Computers as Components 99

Specification

Line-In*

Recelver

Input()

sample-in()

bit-out()

Transmitter

Line-out*

bit-in()
sample-out()

Computers as Components

output()

100

System architecture

Interrupt handlers for samples:
input and output.

Transmitter.
Recelver.

Computers as Components 101

Transmitter

Waveform generation by table lookup.

float sine_wave[N_SAMP] = { 0.0, 0.5,
0.866, 1, 0.866, 0.5, 0.0, -0.5, -0.866, -1.0, -
0.866, -0.5, 0};

@ © o
© O

O O
A4 A4

©)

Computers as Components 102

Receiver

Filters (FIR for simplicity) use circular
buffers to hold data.

Timer measures bit length.

State machine recognizes start bits, data
bits.

Computers as Components 103

Hardware platform

CPU.

A/D converter.
D/A converter.
Timer.

Computers as Components 104

Component design and
testing

Easy to test transmitter and receiver on
host.

Transmitter can be verified with speaker
outputs.

Receiver verification tasks:
start bit recognition;
data bit recognition.

Computers as Components 105

System integration and
testing

Use loopback mode to test components
against each other.

Loopback in software or by connecting D/A
and A/D converters.

Computers as Components 106

