
Computers as Components 1

Using your compiler

Understand various optimization levels (-
O1, -O2, etc.)

armcc
-Ospace perform optimisations to reduce

image size at the expense of increased
execution time.

-Otime perform optimisations to reduce
execution time at the expense of a larger
image.

Computers as Components 2

Gcc optimization levels

In order to control compilation-time and
compiler memory usage, and the trade-offs
between speed and space for the resulting
executable, GCC provides a range of general
optimization levels.

chosen with the command line option -OLEVEL,
where LEVEL is a number from 0 to 3.

-O0 or no -O option (default) : GCC does not
perform any optimization and compiles the
source code in the most straightforward way
possible. This is the best option to use when
debugging a program and is the default if no
optimization level option is specified.

Computers as Components 3

Gcc –O1

Turns on the most common forms of
optimization that do not require any speed-
space tradeoffs.

With this option the resulting executables should
be smaller and faster than with -O0.

The more expensive optimizations, such as
instruction scheduling, are not used at this level.

Compiling with the option -O1 can often take
less time than compiling with -O0, due to the
reduced amounts of data that need to be
processed after simple optimizations.

Computers as Components 4

Gcc –O2

Turns on further optimizations, in addition to
those used by -O1, which include instruction
scheduling.

Only optimizations that do not require any
speed-space tradeoffs are used, so the
executable should not increase in size.

Take longer to compile programs and require
more memory than with -O1.

Best choice for deployment of a program,
because it provides maximum optimization
without increasing the executable size.

It is the default optimization level for releases of
GNU packages.

Computers as Components 5

Gcc –O3

Turns on more expensive optimizations, such as
function inlining, in addition to all the
optimizations of the lower levels -O2 and -O1.

May increase the speed of the resulting
executable, but can also increase its size.

Under some circumstances where these
optimizations are not favorable, this option
might actually make a program slower.

Computers as Components 6

Gcc –funroll-loops

Turns on loop-unrolling, and is independent of
the other optimization options.

It will increase the size of an executable.
Whether or not this option produces a beneficial

result has to be examined on a case-by-case
basis.

Computers as Components 7

Gcc -Os

-Os :This option selects optimizations which
reduce the size of an executable. The aim of
this option is to produce the smallest possible
executable, for systems constrained by memory
or disk space.

In some cases a smaller executable will also run
faster, due to better cache usage.

Computers as Components 8

Using Gcc

It is important to remember that the benefit of
optimization at the highest levels must be
weighed against the cost. The cost of
optimization includes greater complexity in
debugging, and increased time and memory
requirements during compilation. For most
purposes it is satisfactory to use -O0 for
debugging, and -O2 for development and
deployment.

Computers as Components 9

Interpreters

Interpreter: translates and executes
program statements on-the-fly.

Computers as Components 10

JIT compilation

 Also known as dynamic translation for improving the
runtime performance

 JIT builds upon two ideas in run-time environments
Bytecode compilation
Dynamic compilation

 It converts code at runtime prior to executing it natively,
for example bytecode into native machine code.
Source code -> bytecode -> native code

 A VM interprets the bytecode
 A JIT compiler can be used to speed up execution of

bytecode.
Startup delay
Extra memory required

Computers as Components 11

Java

JVM

JIT (just-in-time) compiler: 처음 본 것은 compile

AOT (ahead-of-time) complier: 어플리케이션
다운로드후 모든 코드 컴파일

DAC (dynamic adaptive compiler): advanced JIT,
a combination of JIT and bytecode interpreter

JIT based on the profiled results of interpretation

실제는 Profiling 하지 않고 모든 method들을
compile하기 때문에 overhead가 클 수 있음

Computers as Components 12

Javascript (JS)

 A script language executed in web
browser to reduce the load of the server

Dynamically typed

Prototype based

First-class functions with inner functions and
closures

Computers as Components 13

Javascript (JS)

 A script language executed in web browser to
reduce the load of the server

Dynamically typed
Variable type이 runtime에 결정

Object filed와 function을 arrray 형태로 접근

Prototype based (class 사용하는 않는 oop)
Class에 비해 runtime에 변형 대치 쉬움

Support first-class functions
Closure를 활용하여 지원

Function을 runtime에 생성, data structure에 저장

 다른 function의 argument 또는 return 값으로 전달

Computers as Components 14

First-class

 An object is first-class in the context of a
particular programming language if it
Can be stored in variables and data

structures

Can be passed as a parameter to a
subroutine

Can be return as the result of a subroutine

Can be constructed at runtime

Has intrinsic identity (independent of any
given name)

Computers as Components 15

Closure

 A closure is the local variables for a function
kept alive after the function has returned

A closure is a stack frame is not deallocated
when the function is returned as if a stack frame
were malloc’ed instead of being on the stack.

In Javascript, you can think of a function
reference variable as having a pointer to the
function as well as a hidden pointer to a closure
of the function.

Computers as Components 16

Javascript (JS)

Dynamic language

JS bytecode : 121 개

복잡하여 항상 handler function (CTI)로 처리

 하는 것: 50개

간단한 data type 경우는 native code 생성, 복잡한
data type 경우는 handler function을 이용하는 것:
54개

항상 native code 생성하는 것: 17개

Javascript: script executed in web browser

Computers as Components 17

5.6 Program level

performance analysis

Optimizing for:

Execution time.

Energy/power.

Program size.

Program validation and testing.

Computers as Components 18

Program-level performance

analysis

 Need to understand
performance in detail:

Real-time behavior, not
just typical.

On complex platforms.

 Program performance 
CPU performance:

Pipeline, cache are
windows into program.

We must analyze the entire
program.

Computers as Components 19

Complexities of program

performance

Varies with input data:

Different-length paths.

Cache effects.

Instruction-level performance variations:

Pipeline interlocks.

Fetch times.

Computers as Components 20

How to measure program

performance

Simulate execution of the CPU.
Makes CPU state visible.

Measure on real CPU using timer.
Requires modifying the program to control

the timer.

Measure on real CPU using logic analyzer.
Requires events visible on the pins.

Performance analysis and monitoring
using hardware counters

Computers as Components 21

Program performance metrics

Average-case execution time.

Typically used in application programming.

Worst-case execution time.

A component in deadline satisfaction.

Best-case execution time.

Task-level interactions can cause best-case
program behavior to result in worst-case
system behavior.

Computers as Components 22

Elements of program

performance

Basic program execution time formula:

execution time = program path + instruction timing

Program path: a sequence of instruction
executed by the program

Instruction timing: determined based on the
sequence of instructions traced by the program
path, which takes into account data
dependencies, pipeline behavior, and caching

Computers as Components 23

Data path + instruction timing

Solving these two problems independently
helps simplify analysis.

Easier to separate on simpler CPUs.

Accurate performance analysis requires:

Assembly/binary code.

Execution platform.

Computers as Components 24

Data-dependent paths in

an if statement

if (a || b) { /* T1 */

 if (c) /* T2 */

 x = r*s+t; /* A1 */

 else y=r+s; /* A2 */

 z = r+s+u; /* A3 */

 }

else {

 if (c) /* T3 */

 y = r-t; /* A4 */

}

a b c path

0 0 0 T1=F, T3=F: no assignments

0 0 1 T1=F, T3=T: A4

0 1 0 T1=T, T2=F: A2, A3

0 1 1 T1=T, T2=T: A1, A3

1 0 0 T1=T, T2=F: A2, A3

1 0 1 T1=T, T2=T: A1, A3

1 1 0 T1=T, T2=F: A2, A3

1 1 1 T1=T, T2=T: A1, A3

Computers as Components 25

Paths in a loop

for (i=0, f=0; i<N; i++)

 f = f + c[i] * x[i];

i=0

f=0

i=N

f = f + c[i] * x[i]

i = i + 1

N

Y

loop initialization

loop test

loop body

loop variable update

Computers as Components 26

Instruction timing

 Not all instructions take the same amount of time.

Multi-cycle instructions.

Fetches.

 Execution times of instructions are not independent.

Pipeline interlocks.

Cache effects.

 Execution times may vary with operand value.

Floating-point operations.

Some multi-cycle integer operations.

Computers as Components 27

Mesaurement-driven

performance analysis

Not so easy as it sounds

Drawbacks
Must actually have access to the CPU.

Must know data inputs that give worst/best
case performance.

Must make state visible.

Need CPU or its simulator

Still an important method for performance
analysis.

Computers as Components 28

Input: Feeding the program

Need to know the desired input values.

May need to write software scaffolding

that generates the input values and
examines the outputs to generate feedback-
driven inputs.

Performance can be measured directly on
the hardware or by using a simulator.

Computers as Components 29

Trace-driven measurement

Trace-driven:

Instrument the program.

Save information about the path.

Requires modifying the program.

Trace files are large.

Widely used for cache analysis.

Computers as Components 30

Physical measurement

In-circuit emulator allows tracing.

Affects execution timing.

Logic analyzer can measure behavior at pins.

Address bus can be analyzed to look for events.

Code can be modified to make events visible.

Particularly important for real-world input
streams.

Computers as Components 31

CPU simulation

Some simulators are less accurate.

Cycle-accurate simulator provides
accurate clock-cycle timing.

Simulator models CPU internals.

Simulator writer must know how CPU works.

Computers as Components 32

SimpleScalar FIR filter

simulation

int x[N] = {8, 17, … };

int c[N] = {1, 2, … };

main() {

 int i, k, f;

 for (k=0; k<COUNT; k++)

 for (i=0, f=0 ; i<N; i++)

 f += c[i]*x[i];

}

N total sim
cycles

sim cycles
per filter
execution

100 25854 259

1,000 155759 156

1,0000 1451840 145

Loop set up: 1

Loop body: N

Loop test: N+1

Computers as Components 33

Performance optimization

motivation

Embedded systems must often meet
deadlines.

Faster may not be fast enough.

Need to be able to analyze execution
time.

Worst-case, not typical.

Need techniques for reliably improving
execution time.

Computers as Components 34

Programs and performance

analysis

Best results come from analyzing
optimized instructions, not high-level
language code:

non-obvious translations of HLL statements
into instructions;

code may move;

cache effects are hard to predict.

Computers as Components 35

Loop optimizations

Loops are good targets for optimization

Why?

Basic loop optimizations:

code motion;

induction-variable elimination;

strength reduction (x*2 -> x<<1).

Computers as Components 36

Code motion

for (i=0; i<N*M; i++)

 z[i] = a[i] + b[i];

i<N*M

i=0;

z[i] = a[i] + b[i];

i = i+1;

N

Y

i<X

i=0; X = N*M

Performed (NM-1) times

Computers as Components 37

Induction variable elimination

 Induction variable: its value is derived form the loop
index.

 Consider loop:

for (i=0; i<N; i++)

 for (j=0; j<M; j++)

 z[i,j] = b[i,j];

 Rather than recompute i*M+j for each array in each
iteration, share induction variable between arrays,
increment at end of loop body.

Computers as Components 38

Strength reduction

for (i=0; i<N; i++)

 for (j=0; j<M; j++)

 zbinduct = i*M + j;

 *(zptr + zbinduct) = *(bptr + zbinduct);

 Better code with strength reduction

 xbinduct = 0;

for (i=0; i<N; i++)

 for (j=0; j<M; j++) {

 *(zptr + zbinduct) = *(bptr + zbinduct);

 zbinduct++;

 }

}

Computers as Components 39

Cache analysis

Loop nest: set of loops, one inside other.

Perfect loop nest: no conditionals in nest.

Because loops use large quantities of
data, cache conflicts are common.

Computers as Components 40

Array conflicts in cache

a[0,0]

b[0,0]

main memory cache

1024 4099

...

1024

4099

Computers as Components 41

Array conflicts, cont’d.

Array elements conflict because they are
in the same line, even if not mapped to
same location.

Solutions:

move one array;

pad array.

Computers as Components 42

Performance optimization

hints

Use registers efficiently.

Use page mode memory accesses.

Analyze cache behavior:

instruction conflicts can be handled by
rewriting code, rescheudling;

conflicting scalar data can easily be moved;

conflicting array data can be moved, padded.

Computers as Components 43

Energy/power optimization

Energy: ability to do work.

Most important in battery-powered systems.

Power: energy per unit time.

Important even in wall-plug systems---power
becomes heat.

Computers as Components 44

Measuring energy

consumption

Execute a small loop, measure current:

while (TRUE)

a();

I

Computers as Components 45

Sources of energy

consumption

Relative energy per operation (Catthoor et
al):

memory transfer: 33

external I/O: 10

SRAM write: 9

SRAM read: 4.4

multiply: 3.6

add: 1

Computers as Components 46

Cache behavior is

important

Energy consumption has a sweet spot as
cache size changes:

cache too small: program thrashes, burning
energy on external memory accesses;

cache too large: cache itself burns too much
power.

Computers as Components 47

Cache sweet spot

[Li98] © 1998 IEEE

Computers as Components 48

Optimizing for energy

First-order optimization:

high performance = low energy.

Not many instructions trade speed for
energy.

Computers as Components 49

Optimizing for energy

Use registers efficiently.

Identify and eliminate cache conflicts.

Moderate loop unrolling eliminates some
loop overhead instructions.

Eliminate pipeline stalls.

Inlining procedures may help: reduces
linkage, but may increase cache
thrashing.

Computers as Components 50

Efficient loops

General rules:

Don’t use function calls.

Use unsigned integer for loop counter.

Use <= to test loop counter.

Make use of compiler---global optimization,
software pipelining.

Computers as Components 51

Optimizing for program size

Goal:

reduce hardware cost of memory;

reduce power consumption of memory units.

Two opportunities:

data;

instructions.

Computers as Components 52

Data size minimization

Reuse constants, variables, data buffers in
different parts of code.

Requires careful verification of correctness.

Generate data using instructions.

Computers as Components 53

Reducing code size

Avoid function inlining.

Choose CPU with compact instructions.

Use specialized instructions where
possible.

Computers as Components 54

Program validation and

testing

Validation
 Does it work as it is intended?

Test
Concentrate here on functional verification.

Major testing strategies:
Black box doesn’t look at the source code.

Clear box (white box) does look at the
source code.

Computers as Components 55

Clear-box testing

Examine the source code to determine whether
it works:

Can you actually exercise a path?

Do you get the value you expect along a path?

Testing procedure of 3 steps:

Controllability: provide program with inputs.

Execute.

Observability: examine outputs.

Computers as Components 56

FIR filter with limiter

firout = 0.0;

for (j=curr, k=0; j<N; j++, k++)

 firout += buff[j] * c[k];

for (j=0; j<curr; j++, k++)

 firout += buff[j] * c[k];

if (firout > 100.0) firout = 100.0;

if (firout < -100.0) firout = -100.0;

What if we want to test
the FIR filter itself?

Observability problem:

Want to examine firout
by setting a breakpoint
before limit testing.

What if we want to test
whether the limiting code
works?

 Controllability problem:

Must fill circular buffer
with desired N values.

Computers as Components 57

Execution paths and

testing

Paths are important in functional testing
as well as performance analysis.

In general, an exponential number of
paths through the program.

Show that some paths dominate others.

Heuristically limit paths.

Computers as Components 58

Choosing the paths to test

Possible criteria:

Execute every
statement at least
once.

Execute every branch
direction at least once.

Equivalent for
structured programs.

Not true for gotos.

not covered

Computers as Components 59

Basis paths

Approximate CDFG
with undirected
graph.

Undirected graphs
have basis paths:

All paths are linear
combinations of basis
paths.

Computers as Components 60

Cyclomatic complexity

Cyclomatic complexity
is a bound on the size
of basis sets:

e = # edges

n = # nodes

p = number of graph
components

M = e – n + 2p.

Computers as Components 61

Branch testing

Heuristic for testing branches.

Exercise true and false branches of
conditional.

Exercise every simple condition at least once.

Computers as Components 62

Branch testing example

Correct:

if (a || (b >= c)) {
printf(“OK\n”); }

Incorrect:

if (a && (b >= c)) {
printf(“OK\n”); }

Test:

a = F

(b >=c) = T

Example:

Correct: [0 || (3 >=
2)] = T

Incorrect: [0 && (3
>= 2)] = F

Computers as Components 63

Another branch testing

example

Correct:
if ((x == good_pointer) &&

x->field1 == 3)) {
printf(“got the value\n”);
}

Incorrect:
 if ((x = good_pointer) &&

x->field1 == 3)) {
printf(“got the value\n”);
}

Incorrect code
changes pointer.

Assignment returns
new LHS in C.

Test that catches
error:

(x != good_pointer)
&& x->field1 = 3)

Computers as Components 64

Domain testing

Heuristic test for
linear inequalities.

Test on each side +
boundary of
inequality.

Computers as Components 65

Def-use pairs

Variable def-use:

Def when value is
assigned (defined).

Use when used on
right-hand side.

Exercise each def-use
pair.

Requires testing
correct path.

Computers as Components 66

Loop testing

Loops need specialized tests to be tested
efficiently.

Heuristic testing strategy:

Skip loop entirely.

One loop iteration.

Two loop iterations.

# iterations much below max.

n-1, n, n+1 iterations where n is max.

Computers as Components 67

Black-box testing

Complements clear-box testing.

May require a large number of tests.

Tests software in different ways.

Computers as Components 68

Black-box test vectors

Random tests.

May weight distribution based on software
specification.

Regression tests.

Tests of previous versions, bugs, etc.

May be clear-box tests of previous versions.

Computers as Components 69

How much testing is

enough?

Exhaustive testing is impractical.

One important measure of test quality---bugs
escaping into field.

Good organizations can test software to give
very low field bug report rates.

Error injection measures test quality:

Add known bugs.

Run your tests.

Determine % injected bugs that are caught.

