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Using your compiler 

Understand various optimization levels (-
O1, -O2, etc.) 

armcc 
-Ospace perform optimisations to reduce 

image size at the expense of increased 
execution time.  

-Otime perform optimisations to reduce 
execution time at the expense of a larger 
image.  
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Gcc optimization levels 

In order to control compilation-time and 
compiler memory usage, and the trade-offs 
between speed and space for the resulting 
executable, GCC provides a range of general 
optimization levels. 

chosen with the command line option -OLEVEL, 
where LEVEL is a number from 0 to 3. 

-O0 or no -O option (default) : GCC does not 
perform any optimization and compiles the 
source code in the most straightforward way 
possible. This is the best option to use when 
debugging a program and is the default if no 
optimization level option is specified.  
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Gcc –O1 

Turns on the most common forms of 
optimization that do not require any speed-
space tradeoffs.  

With this option the resulting executables should 
be smaller and faster than with -O0.  

The more expensive optimizations, such as 
instruction scheduling, are not used at this level.  

Compiling with the option -O1 can often take 
less time than compiling with -O0, due to the 
reduced amounts of data that need to be 
processed after simple optimizations.  
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Gcc –O2 

Turns on further optimizations, in addition to 
those used by -O1, which include instruction 
scheduling.  

Only optimizations that do not require any 
speed-space tradeoffs are used, so the 
executable should not increase in size.  

Take longer to compile programs and require 
more memory than with -O1.  

Best choice for deployment of a program, 
because it provides maximum optimization 
without increasing the executable size.  

It is the default optimization level for releases of 
GNU packages.  
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Gcc –O3 

Turns on more expensive optimizations, such as 
function inlining, in addition to all the 
optimizations of the lower levels -O2 and -O1. 

May increase the speed of the resulting 
executable, but can also increase its size.  

Under some circumstances where these 
optimizations are not favorable, this option 
might actually make a program slower.  
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Gcc –funroll-loops 

Turns on loop-unrolling, and is independent of 
the other optimization options. 

It will increase the size of an executable. 
Whether or not this option produces a beneficial 

result has to be examined on a case-by-case 
basis.  
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Gcc -Os 

-Os :This option selects optimizations which 
reduce the size of an executable. The aim of 
this option is to produce the smallest possible 
executable, for systems constrained by memory 
or disk space.  

In some cases a smaller executable will also run 
faster, due to better cache usage.  
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Using Gcc 

It is important to remember that the benefit of 
optimization at the highest levels must be 
weighed against the cost. The cost of 
optimization includes greater complexity in 
debugging, and increased time and memory 
requirements during compilation. For most 
purposes it is satisfactory to use -O0 for 
debugging, and -O2 for development and 
deployment.  
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Interpreters 

Interpreter: translates and executes 
program statements on-the-fly. 
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JIT compilation 

 Also known as dynamic translation for improving the 
runtime performance 

 JIT builds upon two ideas in run-time environments 
Bytecode compilation 
Dynamic compilation 

 It converts code at runtime prior to executing it natively, 
for example bytecode into native machine code. 
Source code -> bytecode -> native code 

 A VM  interprets the bytecode 
 A JIT compiler can be used to speed up execution of 

bytecode. 
Startup delay 
Extra memory required 



Computers as Components 11 

Java 

JVM 

JIT (just-in-time) compiler: 처음 본 것은 compile 

AOT (ahead-of-time) complier: 어플리케이션 
다운로드후 모든 코드 컴파일 

DAC (dynamic adaptive compiler): advanced JIT, 
a combination of JIT and bytecode interpreter 

JIT based on the profiled results of interpretation 

실제는 Profiling 하지 않고 모든 method들을 
compile하기 때문에 overhead가 클 수 있음 
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Javascript (JS) 

 A script language executed in web 
browser to reduce the load of the server 

Dynamically typed 

Prototype based 

First-class functions with inner functions and 
closures 
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Javascript (JS) 

 A script language executed in web browser to 
reduce the load of the server 

Dynamically typed 
Variable type이 runtime에 결정 

Object filed와 function을 arrray 형태로 접근 

Prototype based (class 사용하는 않는 oop) 
Class에 비해 runtime에 변형 대치 쉬움 

Support first-class functions  
Closure를 활용하여 지원 

Function을 runtime에 생성, data structure에 저장 

   다른 function의 argument 또는 return 값으로 전달 
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First-class 

 An object is first-class in the context of a 
particular programming language if it  
Can be stored in variables and data 

structures 

Can be passed as a parameter to a 
subroutine 

Can be return as the result of a subroutine 

Can be constructed at runtime 

Has intrinsic identity (independent of any 
given name) 
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Closure 

 A closure is the local variables for a function 
kept alive after the function has returned 

A closure is a stack frame is not deallocated 
when the function is returned as if a stack frame 
were malloc’ed instead of being on the stack. 

In Javascript, you can think of a function 
reference variable as having a pointer to the 
function as well as a hidden pointer to a closure 
of the function. 
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Javascript (JS) 

Dynamic language 

JS bytecode : 121 개 

복잡하여 항상 handler function (CTI)로 처리 

    하는 것: 50개 

간단한 data type 경우는 native code 생성, 복잡한 
data type 경우는 handler function을 이용하는 것: 
54개 

항상 native code 생성하는 것: 17개 

Javascript: script executed in web browser 
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5.6 Program level 

performance analysis 

Optimizing for: 

Execution time. 

Energy/power. 

Program size. 

Program validation and testing. 
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Program-level performance 

analysis 

 Need to understand 
performance in detail: 

Real-time behavior, not 
just typical. 

On complex platforms. 

 Program performance  
CPU performance: 

Pipeline, cache are 
windows into program. 

We must analyze the entire 
program. 
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Complexities of program 

performance 

Varies with input data: 

Different-length paths. 

Cache effects. 

Instruction-level performance variations: 

Pipeline interlocks. 

Fetch times. 
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How to measure program 

performance 

Simulate execution of the CPU. 
Makes CPU state visible. 

Measure on real CPU using timer. 
Requires modifying the program to control 

the timer. 

Measure on real CPU using logic analyzer. 
Requires events visible on the pins. 

Performance analysis and monitoring 
using hardware counters 



Computers as Components 21 

Program performance metrics 

Average-case execution time. 

Typically used in application programming. 

Worst-case execution time. 

A component in deadline satisfaction. 

Best-case execution time. 

Task-level interactions can cause best-case 
program behavior to result in worst-case 
system behavior. 
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Elements of program 

performance 

Basic program execution time formula: 

execution time = program path + instruction timing 

Program path: a sequence of instruction 
executed by the program 

Instruction timing: determined based on the 
sequence of instructions traced by the program 
path, which takes into account data 
dependencies, pipeline behavior, and caching 
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Data path + instruction timing 

Solving these two problems independently 
helps simplify analysis. 

Easier to separate on simpler CPUs. 

Accurate performance analysis requires: 

Assembly/binary code. 

Execution platform. 
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Data-dependent paths in 

an if statement 

if (a || b) { /* T1 */ 

 if ( c ) /* T2 */ 

  x = r*s+t; /* A1 */ 

 else y=r+s; /* A2 */ 

 z = r+s+u; /* A3 */ 

 } 

else { 

 if ( c ) /* T3 */ 

  y = r-t; /* A4 */ 

} 

a b c path 

0 0 0 T1=F, T3=F: no assignments 

0 0 1 T1=F, T3=T: A4 

0 1 0 T1=T, T2=F: A2, A3 

0 1 1 T1=T, T2=T: A1, A3 

1 0 0 T1=T, T2=F: A2, A3 

1 0 1 T1=T, T2=T: A1, A3 

1 1 0 T1=T, T2=F: A2, A3 

1 1 1 T1=T, T2=T: A1, A3 
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Paths in a loop 

for (i=0, f=0; i<N; i++)  

 f = f + c[i] * x[i]; 

i=0 

f=0 

i=N 

f = f + c[i] * x[i] 

i = i + 1 

N 

Y 

loop initialization 

loop test 

loop body 

loop variable update 
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Instruction timing 

 Not all instructions take the same amount of time. 

Multi-cycle instructions. 

Fetches. 

 Execution times of instructions are not independent. 

Pipeline interlocks. 

Cache effects. 

 Execution times may vary with operand value. 

Floating-point operations. 

Some multi-cycle integer operations. 
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Mesaurement-driven 

performance analysis 

Not so easy as it sounds 

Drawbacks 
Must actually have access to the CPU. 

Must know data inputs that give worst/best 
case performance. 

Must make state visible. 

Need CPU or its simulator 

Still an important method for performance 
analysis. 
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Input: Feeding the program 

Need to know the desired input values. 

May need to write software scaffolding  

that generates the input values and 
examines the outputs to generate feedback-
driven inputs. 

Performance can be measured directly on 
the hardware or by using a simulator. 
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Trace-driven measurement 

Trace-driven: 

Instrument the program. 

Save information about the path. 

Requires modifying the program. 

Trace files are large. 

Widely used for cache analysis. 
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Physical measurement 

In-circuit emulator allows tracing. 

Affects execution timing. 

Logic analyzer can measure behavior at pins. 

Address bus can be analyzed to look for events. 

Code can be modified to make events visible. 

Particularly important for real-world input 
streams. 
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CPU simulation 

Some simulators are less accurate. 

Cycle-accurate simulator provides 
accurate clock-cycle timing. 

Simulator models CPU internals. 

Simulator writer must know how CPU works. 
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SimpleScalar FIR filter 

simulation 

int x[N] = {8, 17, … }; 

int c[N] = {1, 2, … }; 

main() { 

 int i, k, f; 

 for (k=0; k<COUNT; k++) 

  for (i=0, f=0 ; i<N; i++) 

   f += c[i]*x[i]; 

} 

N total sim 
cycles 
 

sim cycles 
per filter 
execution 

100 25854 259 

1,000 155759 156 

1,0000 1451840 145 

Loop set up: 1 

Loop body:   N 

Loop test:     N+1 
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Performance optimization 

motivation 

Embedded systems must often meet 
deadlines. 

Faster may not be fast enough. 

Need to be able to analyze execution 
time. 

Worst-case, not typical. 

Need techniques for reliably improving 
execution time. 
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Programs and performance 

analysis 

Best results come from analyzing 
optimized instructions, not high-level 
language code: 

non-obvious translations of HLL statements 
into instructions; 

code may move; 

cache effects are hard to predict. 
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Loop optimizations 

Loops are good targets for optimization 

Why? 

Basic loop optimizations: 

code motion; 

induction-variable elimination; 

strength reduction (x*2 -> x<<1). 
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Code motion 

for (i=0; i<N*M; i++) 

 z[i] = a[i] + b[i]; 

i<N*M 

i=0; 

z[i] = a[i] + b[i]; 

i = i+1; 

N 

Y 

i<X 

i=0; X = N*M 

Performed (NM-1) times 
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Induction variable elimination 

 Induction variable: its value is derived form the loop 
index. 

 Consider loop: 

for (i=0; i<N; i++) 

 for (j=0; j<M; j++) 

  z[i,j] = b[i,j]; 

 Rather than recompute i*M+j for each array in each 
iteration, share induction variable between arrays, 
increment at end of loop body. 
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Strength reduction 

for (i=0; i<N; i++) 

 for (j=0; j<M; j++) 

   zbinduct = i*M + j; 

  *(zptr + zbinduct) = *(bptr + zbinduct); 

 Better code with strength reduction 

     xbinduct = 0; 

for (i=0; i<N; i++) 

 for (j=0; j<M; j++) { 

    *(zptr + zbinduct) = *(bptr + zbinduct); 

      zbinduct++; 

   } 

} 
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Cache analysis 

Loop nest: set of loops, one inside other. 

Perfect loop nest: no conditionals in nest. 

Because loops use large quantities of 
data, cache conflicts are common. 
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Array conflicts in cache 

a[0,0] 

b[0,0] 

main memory cache 

1024 4099 

... 

1024 

4099 
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Array conflicts, cont’d. 

Array elements conflict because they are 
in the same line, even if not mapped to 
same location. 

Solutions: 

move one array; 

pad array. 
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Performance optimization 

hints 

Use registers efficiently. 

Use page mode memory accesses. 

Analyze cache behavior: 

instruction conflicts can be handled by 
rewriting code, rescheudling; 

conflicting scalar data can easily be moved; 

conflicting array data can be moved, padded. 
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Energy/power optimization 

Energy: ability to do work. 

Most important in battery-powered systems. 

Power: energy per unit time. 

Important even in wall-plug systems---power 
becomes heat. 
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Measuring energy 

consumption 

Execute a small loop, measure current: 

while (TRUE) 

a(); 

I 
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Sources of energy 

consumption 

Relative energy per operation (Catthoor et 
al): 

memory transfer: 33 

external I/O: 10 

SRAM write: 9 

SRAM read: 4.4 

multiply: 3.6 

add: 1 
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Cache behavior is 

important 

Energy consumption has a sweet spot as 
cache size changes: 

cache too small: program thrashes, burning 
energy on external memory accesses; 

cache too large: cache itself burns too much 
power. 
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Cache sweet spot 

[Li98] ©  1998 IEEE 
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Optimizing for energy 

First-order optimization: 

high performance = low energy. 

Not many instructions trade speed for 
energy. 
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Optimizing for energy 

Use registers efficiently. 

Identify and eliminate cache conflicts. 

Moderate loop unrolling eliminates some 
loop overhead instructions. 

Eliminate pipeline stalls. 

Inlining procedures may help: reduces 
linkage, but may increase cache 
thrashing. 
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Efficient loops 

General rules: 

Don’t use function calls. 

Use unsigned integer for loop counter. 

Use <= to test loop counter. 

Make use of compiler---global optimization, 
software pipelining. 
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Optimizing for program size 

Goal: 

reduce hardware cost of memory; 

reduce power consumption of memory units. 

Two opportunities: 

data; 

instructions. 
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Data size minimization 

Reuse constants, variables, data buffers in 
different parts of code. 

Requires careful verification of correctness. 

Generate data using instructions. 
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Reducing code size 

Avoid function inlining. 

Choose CPU with compact instructions. 

Use specialized instructions where 
possible. 
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Program validation and 

testing 

Validation 
 Does it work as it is intended? 

Test 
Concentrate here on functional verification. 

Major testing strategies: 
Black box doesn’t look at the source code. 

Clear box (white box) does look at the 
source code. 
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Clear-box testing 

Examine the source code to determine whether 
it works: 

Can you actually exercise a path? 

Do you get the value you expect along a path? 

Testing procedure of 3 steps: 

Controllability: provide program with inputs. 

Execute. 

Observability: examine outputs. 
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FIR filter with limiter 

firout = 0.0; 

for (j=curr, k=0; j<N; j++, k++)  

 firout += buff[j] * c[k]; 

for (j=0; j<curr; j++, k++) 

 firout += buff[j] * c[k]; 

if (firout > 100.0) firout = 100.0; 

if (firout < -100.0) firout = -100.0; 

What if we want to test 
the FIR filter itself? 

Observability problem: 

Want to examine firout 
by setting a breakpoint 
before limit testing. 

What if we want to test 
whether the limiting code 
works? 

 Controllability problem: 

Must fill circular buffer 
with desired N values. 
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Execution paths and 

testing 

Paths are important in functional testing 
as well as performance analysis. 

In general, an exponential number of 
paths through the program. 

Show that some paths dominate others. 

Heuristically limit paths. 
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Choosing the paths to test 

Possible criteria: 

Execute every 
statement at least 
once. 

Execute every branch 
direction at least once. 

Equivalent for 
structured programs. 

Not true for gotos. 

not covered 
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Basis paths 

Approximate CDFG 
with undirected 
graph. 

Undirected graphs 
have basis paths: 

All paths are linear 
combinations of basis 
paths. 
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Cyclomatic complexity 

Cyclomatic complexity 
is a bound on the size 
of basis sets: 

e = # edges 

n = # nodes 

p = number of graph 
components 

M = e – n + 2p. 
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Branch testing 

Heuristic for testing branches. 

Exercise true and false branches of 
conditional. 

Exercise every simple condition at least once. 
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Branch testing example 

Correct: 

if (a || (b >= c)) { 
printf(“OK\n”); } 

Incorrect: 

if (a && (b >= c)) { 
printf(“OK\n”); } 

Test: 

a = F 

(b >=c) = T 

Example: 

Correct: [0 || (3 >= 
2)] = T 

Incorrect: [0 && (3 
>= 2)] = F 
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Another branch testing 

example 

Correct: 
if ((x == good_pointer) && 

x->field1 == 3)) { 
printf(“got the value\n”); 
} 

Incorrect: 
 if ((x = good_pointer) && 

x->field1 == 3)) { 
printf(“got the value\n”); 
} 

Incorrect code 
changes pointer. 

Assignment returns 
new LHS in C. 

Test that catches 
error: 

(x != good_pointer) 
&& x->field1 = 3) 
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Domain testing 

Heuristic test for 
linear inequalities. 

Test on each side + 
boundary of 
inequality. 
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Def-use pairs 

Variable def-use: 

Def when value is 
assigned (defined). 

Use when used on 
right-hand side. 

Exercise each def-use 
pair. 

Requires testing 
correct path. 
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Loop testing 

Loops need specialized tests to be tested 
efficiently. 

Heuristic testing strategy: 

Skip loop entirely. 

One loop iteration. 

Two loop iterations. 

# iterations much below max. 

n-1, n, n+1 iterations where n is max. 
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Black-box testing 

Complements clear-box testing. 

May require a large number of tests. 

Tests software in different ways. 
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Black-box test vectors 

Random tests. 

May weight distribution based on software 
specification. 

Regression tests. 

Tests of previous versions, bugs, etc. 

May be clear-box tests of previous versions. 
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How much testing is 

enough? 

Exhaustive testing is impractical. 

One important measure of test quality---bugs 
escaping into field. 

Good organizations can test software to give 
very low field bug report rates. 

Error injection measures test quality: 

Add known bugs. 

Run your tests. 

Determine % injected bugs that are caught. 


