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i What i1s Minimal Realization ?

> Realization problem ( 10D — SVD )
* To apply many design techniques & computational algorithms
for dynamical equations.
* To simulate before the system is built.
* To establish the link between SVD & 10D.

> Good realization among many realizations.

* |least possible dimension . _ _
(minimal dimension)
* controllable & observable
* easy to analysis (simple form)
— minimal realization,
Controllable(controller) canonical form
Observale(observer ) canonical form

Jordan-form

Linear Svstems Perception and Intelligence Laboratory
4 2 School of Electrical Engineering at SNU



Minimal Realization and Coprime

Definition: Degree of proper rational transfer function
For a proper rational transfer function
N (s)
D(s)’
If N(s) and D(s) is coprime,
Degree of g(s) .= Degree of D(s).

g(s) =

Question:
: ~ s+1
What is the degree of g(s) =—; ?
S°+2s+1
Linear Systems N Perception and Intelligence Laboratory

School of Electrical Engineering at SNU



Minimal Realization and Coprime

Definition:
Let SISO state equation
X = AXx+ Bu
y =Cx+Du
be realization of proper & coprime rational ftn g(s).
Then, the state equation is said to be irreducible iff
det(sl — A) = k(denominatior of g(s))
dimA=deg g(s)
where Kk is a nozero constant.
The irreducible state equation is called minimal realization of g(s)

Perception and Intelligence Laboratory
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i Controllable Canonical Form

Realization of g(s)="N(S)

-1
ﬂlsn +“'+ﬁn

"+ ST+t

g(s)=e+

n

Bs"" +-+ _N(s) _ y(s)
"+, 8"t 4+, D(s) u(s)

= D(s)y(s) = N(s)u(s)
= y(s) = N(s)D " (s)u(s)

Controllable canonical-form realization

g(s) =

Introduce new variable v(t) by
v(s) = D '(s)u(s)

_, D(s)v(s) =u(s) (v(s): 1 j
y(s) =N(s)v(s) (u(s) D(s)

Perception and Intelligence Laboratory
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Controllable Canonical Form

Realization of Proper Rational Functions
vis) 1 1
uis) D(s) s"+as"t+-a

D(s)v(s) =u(s)

n

Define
[ x,(s) ] [s"w(s)| [s"t]
; s"%v(s s"?
x(s)=| . |= , ()| . |v(s),
| X, (8)] | v(s) | [ 1 |
s"v(s) = —a, V(s) —«, ,SV(S) —---—a,S"v(s) + u(s)
SX, (S) =~ X, (S) — &, 1 X (S) — T ogX (S) +Uu (S)
Linear Systems 6 Perception and Intelligence Laboratory
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Controllable Canonical Form

In time domain

X (1) = —a X — ap X, ==+ —a X, +u(t)
o s" [ %,(s)
Sn—l S
sx(s)=| . [|v(s)= Xl( )
S ] | Xha (S)_
__al &, —a, 1 1 1 [1]
1 0 0 O X,
0 1 O O O : :
X = .. (u(t *
0 1 0 O : : © )
O 1 O 0] 5 0
Y 1 0 || X | [O]
v=[0 O 1] x
Linear Systems . Perception and Intelligence Laboratory
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i Controllable Canonical Form

¥(s) = N(S)V(s) = > /35" V()

[ 5" My(s) |
s"?v(s)

:[/81 /82 /Bn]

| v(s) |
:[/81 /82 ,Bn]X(S)
=y =8 B - B ]x®

Perception and Intelligence Laboratory
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Controllable Canonical Form

Controllability

[sl-A B]
(s+a, a, .. . a, : 11|
-1 S 0O O : 0
0] -1 s 0 O Do
= . . ||LlrowsY s
0O -1 0] o :
O -1 s O : 0
0 0 .. 0 -1 s i 0]
has rank n regardless of C=[3, --- ] or N(s).
N (s)

without coprimeness

Controllable realization from
D(s)

— Controllable Canonical form

Perception and Intelligence Laboratory

Linear Systems . : .
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Controllable Canonical Form

Theorem 7.1

Controllable canonical form is observable iff
D(s) and N(s) are coprime.
Pf.
(A=B)<= (-B=~A)
If D(s) and N (s) are not coprime, there exists a A4, such that
N (/’ll) = 181;213 + 182212 + B4+, =0
D) = 214 + 051213 + azﬂ,lz + oA +a, =0.

Perception and Intelligence Laboratory
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Controllable Canonical Form

Pf. (cont)
Let us define v::=[4° 4> A, 1] =0,
N(4)=cv=0
-, —a, -a, -a,]
Ay — 1 0] o) o)
o) 1 o) o)
0 0 1 0
A’v = AAV = LAV = A%V, ...
¢ | [ cv |
Ov = CA2 V= ﬂlzcv =0
CA A“cv
| cA® | A°cV |

NN

N

N

T

R

This implies that O does not have full rank, i.e., not observable.

Perception and Intelligence Laboratory
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Controllable Canonical Form

Pf. (cont)

(A<=B)<= (A=~ B)
If the state equation is not observable, then
by Theorem 6.01, there exists A4, of A and v = 0 such that
[A A } v =0.
C
or
(A—Al)v=0 and cv =0.
N(4) =cv=82" + B A4° + By + B, = 0.
A, 1saroot of N(A4,).
det(4,1 -A)=D(4) =0.

This implies N (s) and D(s) are not coprime.

Perception and Intelligence Laboratory
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Observable Canonical Form

Observable canonical form realization
N (s
DES; u(s)
D(s)y(s) = N(s)u(s)
In Time Domain
y" @) + ey (@) o+ o,y (1)
=AU O+ + AU ()

Taking Laplace Transform with nonzero initial condition,

y(s) =

Perception and Intelligence Laboratory
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Observable Canonical Form

Taking Laplace Transform (non-zero initial condition)
s"y(s) — (s"'y(0) +s" *y® (0) +---+ y" P (0)
+ay {8"HY(8) — (8" Y(0) +---+ Y P (0) )}
+o+a,y(s)
= A, {s"u(s) —(s"*u(0) +---+u"?(0))}

+5,{.. ...
+,u(s)

Perception and Intelligence Laboratory
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Observable Canonical Form

D(s)Y(s) = N(8)u(s) +{y (03" +(y?(0) + &, y(0) - Au(0) ) s"*
+ .. ( y(n—l) (0) + aly(n—Z) (0) — 'Blu(n—Z) (0) + azy(n—3) (0) — ,6’2u(”‘3) (0) +---
+an—1y(0) T an—lu (O)) }

If initial state is known, output for a u(t) is unique.
We choose state as;

X, (1) = y(t)
Xot () =y (t) + o y(t) — Su(t)

X () =y " PO +ay"? ) - AUV M)+ o,y (1) - Buut) ()

Linear Svstems Perception and Intelligence Laboratory
4 15 School of Electrical Engineering at SNU



Observable Canonical Form

X, =X,+ta X, —puUu =X, =X,,—oX, + /U
Xn — Xn -1 "'az 182u — X Xn—2 _azxn _I_lBZu

Xy =X, + X, — U = X, =X —a, X, + S,,U
(*)&(**) — Xl = —Q, Xn + ﬂnu

o -+ -+ 0 -« | B,
1 0 - 0 -, :
= X = 1 E :|X+| : |u
o)
L 1 —a | B
y=[0 1]x
Linear Systems 16 Perception and Intelligence Laboratory
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Observable Canonical Form

Note:
{A,C} does not depend on {4, },i.e. N(s)

Plasalon

= {A, C} Is always observable regardless of coprime

between N (s) & D(s) (may not be controllable if not coprime)
—> Observable(or observer) canonical form.

Perception and Intelligence Laboratory
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Minimal Realization

Coprime Fractions

N(s) _ N(s)R(s)
D(s) D(s)R(s)’

g(s) =

If D(s) and N (s) are coprime, controllable or observable
realization of §(s) = N(s)/ D(s) is minimal realization.

Theorem 7.2

{A, b, c, d}is aminimal realization of g(s) iff
{A, b} is controllable and {A, c} is observable or iff
dim A =deg g(s).

Perception and Intelligence Laboratory
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Minimal Realization

Pf. of Theorem 7.2

(=)
If {A, b} is not controllable or {A, c} is not observable,
the state equation can be reduced by Theorem 6.6 and 6.06.

Thus {A, b, c, d} is not minimal.

Perception and Intelligence Laboratory
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Minimal Realization

Pf. of Theorem 7.2
(<)
If {A, b, c, d} is controllable and observable, then o(OC) =n.
However, if {A, b, c, d} is not minimal, there exists
a realization of g(s) {A,b, T, d} withn, <n. By Theorem 4.1,
CA"b=CA"b, m=0,1,2,...

C cb cAb .. cA"b |
CA A
OC = (b Ab .. A™b]=| © b
| CA™ cA"b ... cA*"p |

=0,C_ hasrankn, <n.
This is contracts to that {A, b, c, d} is controllable and observable.

Perception and Intelligence Laboratory
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Minimal Realization

Theorem 7.3
All minimal realization of g(s) are equivalent.
Pf.
Let {A, b, c,d}and {A,b, €, d} are minimal,
OC =0C and OAC =OAC
A =0"'0OACC™* =PAP?,
where P =00 = CC™*(«— OC = OC).
Note:
If {A, b, c, d} is minimal (controllable and observable),
Asymptotically stability <= BIBO stability
Linear Systems 5 Perception and Intelligence Laboratory

School of Electrical Engineering at SNU



Computing Coprime Fractions

Computing Coprime Fractions

_ N(s)
g(s) = D(s)
N(s) N(s)
D(s) D(s)

If deg D(s) < deg D(s), D(s) and N (s) are not coprime.
D(s)(—N(s)) + N(s)D(s) =0

D(s) = D, + D;s+ D,s* + D,s° + D,s*

N(s)= N, + N,s+ N,s* + N,s®+ N,s*

D(s) = D, + D;s + D,s* + D,s®

N(s) = N, +N,s+N,s* + N,s

Perception and Intelligence Laboratory
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Computing Coprime Fractions

By Coefficient Comparison, ._ o qyivester resultant)

D, N, : 0 0 : 0 ©0,: 0 OJ-NTi
/D, N, | D, N, i 0 01li 0 0olD |,
'|D; N, : D, N, : D, N, : 0 01 -N, |
1| D; Ny j D, N, ¢ D N j: Dy No: D, :IrO
/D, N, 1 D Ny i D, N, i D Ny =N |
! 0 O : D, N, : D, N, : D, N2: _|§2__:
1] 0 _0_4_0__0__:_Dg N i: Dy Ny =Ny

0 0 ; 0O 0 i 0 0 ! D NJI D

LI vectors Primary dependent N-column

D(s) and N(s) are coprime iff S is nonsingular

Perception and Intelligence Laboratory
School of Electrical Engineering at SNU
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Computing Coprime Fractions

Example 7.1
N(s) 6s® +s® +3s—20
D(s) 2s*+7s®+15s*+16s+10
Linear Systems 04 Perception and Intelligence Laboratory

School of Electrical Engineering at SNU



Computing Coprime Fractions

Example 7.1 (cont)

| [10 —20 E__Q__O___f_Q__Q}._E_Q__Q.,r_—ﬁ1:
' |16 3 £10 -20 ¢ 0 0! i 0 OI _3:
15 1 £ 16 3 10 200 0 0 0| -N,|
17 6 ¢ 15 1 i 16 3.510—20} g
|2 0 [ 7 6 15 1 16 3HI-N,
|0 o : 2 0 7 6! 15 10D,
v 0 _0O__n_Q__0 _-__2__Qy : 7 6 ||| =N,
_o\ 0 ::/40___0_ . 0 0o i 2 o0l DB,
LIvectors/J’/

Linear Systems

Primary dependent N-column

25
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Computing Coprime Fractions

Example 7.1 (cont)

This monic null vector equals

=[4 2 -3 2 0 1].

Thus we have N(s) =—4+3s+0-s°> D(s)=2+2s+5s°

and
6s®+s”+3s—20 _ 3s—4
2s* +75% +15s +16s+10 s> +2s+2
Linear Systems o6 Perception and Intelligence Laboratory
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Computing Coprime Fractions

Theorem 7.4
deg g(s) = number of linearly independent N -columns = «

The coefficients of a coprime fraction g(s) = N(s)/ D(s) is given by

[-N, B, -N, B, -~ -N, D,]

y7;

QR Decomposition for column searching of S

Consider an nx m matrix M.

Then there exists an nx n orthonornal matrix Q such that
QM =R,

where R is an upper triangular matrix and

oM = pR with LI columns in order from left to right.

M=0QR, Q'=Q =0Q « QR decomposition.

Perception and Intelligence Laboratory
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Computing Coprime Fractions

Example 7.1

(-25.1 3.7 -206 101 -11.6 110 -4.1 5.3 |
0 -20.7 -10.3 4.3 —7.2 2.1 —3.6 6.7

0 0 -10.2 -15.6 -20.3 0.8 -16.8 9.6

R 0 0 8.9 -35 -179 -11.2 7.3

10 0 0 0 -5.0 0 -12.0 -15.0
0 0 0 0 0 0 2.0 0
0 0 0 0 0 0 —4.6 0
] 0 0 0 0 0 CT) 0 0 |
Primary dependent N-column
Linear Systems o8 Perception and Intelligence Laboratory
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Computing Coprime Fractions

Primary dependent N-column

|2
(d X X X X X X X
O n X X X X X X
O 0 d x x X X X
R_ O 0 0 n x x X X
O 0 0O 0Od 0 x x
O 0 0O 0O OO x O
O 0 0O OO 0Od O
0 0 0 00 0 0 O
s Systeme . Perception and Intelligence Laboratory

School of Electrical Engineering at SNU



HW 7-1

Linear Systems 30

Consider

__Bs+pf . N(s)
9= +a,s+a, D(s)

and its realization

X = [_al _az}x+[l}u y=[B8B.]x
1 o) o)
Show that the state equation is observable if and only if the
Sylvester resultant of D(s) and N (s) is nonsingular.

Perception and Intelligence Laboratory
School of Electrical Engineering at SNU



Balanced Realization

Balanced Realization

X = AX+bu

y = CX
If the system is controllable, observable, and asymptotically stable,
there exist W, > 0, W, > 0 such that

AW, + W A" = -bb’
and

AW, + W A" = -cc".

Perception and Intelligence Laboratory
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Balanced Realization

Different Minimal Realization has different W, and W, .

. | -1 -4/ 1 35+18
X = X + U <—g(s)=—;
da -2 2c s°+3s+18

y=[-1 —2/a]x

0.5 0] 05 O
W, = 0 , | and W, =

a’ | 0 1/a’
025 O
WCWO —
0O 1

05 O N
W, =W, = 0 1 for a=1 «— Balanced Realization

/ Syst Perception and Intelligence Laboratory
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Balanced Realization

Theorem 7.5

Let {A, b, c} and {A, b, €} be minimal and equivalent,
let W.W, and W, W, be the product of their controllability

and observability Grammians.
W_W, and W, W, are similar and their eigenvalues are all

real and positive.

Linear Svstems Perception and Intelligence Laboratory
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Balanced Realization

Pf. of Theorem 7.5

A=PAP' Db=Pb <C=cP"

AW, + WA’ = -bb’

and

AW +WA=-CT

PAP*W, + W_(P') *A'P’' = -Pbb'P’

which implies

AP*W_(P)Y*+P*W,(P)*A’'=-bb’

W. =P*W_(P)™" or W, = PW_P’

W, =P'W.P orW, =(P)*W P

W.W, =P *"W_(P)*'P'W,P =P *W_W.P — similar

Perception and Intelligence Laboratory
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Balanced Realization

Pf. of Theorem 7.5 (cont)
By Theorem 3.6, since W, is symmetric and positive definite,
W, =Q'DQ = Q'D"’D"*Q = R'R,
where R is not orthogonal but nonsingular.
det(c’1 —W_W.,) = det(c’l — R'RW, ) = det(c’l - RW_R’)
This implies that W_ W, and RW_R’ have the same eigenvalues.

Since RW_R' is symmetric and positive definite,
all eigenvalues are real and positive. (Q.E.D.)

Note:
W._W., of any minimal realization is similar =,
where X =diag(o,,0,,---,0,)ando, =20, =>---=20, >0
Linear Systems 35 Perception and Intelligence Laboratory
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Balanced Realization

Theorem 7.6

For any n —dimensional minimal equation {A, b, c},

there exists an equivalence transformation X = Px such that
W, =W, =

This is called a balanced realization.

Pf. Theorem 7.6
W. =R'R
R'W_R :real and symmetric
— R'W.R =U>? U’ < U :orthonormal
PT=R'U YPorx R ()T
W, =PWIP'R "VERWJ RR' "= (« _= ")

W, = (P)EW, B RW RUX Y "RW R— (UX U '= 21y

(6]

Perception and Intelligence Laboratory
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Balanced Realization

Note:
If W, =B W, = 2, itiscalled input-normal realization.

If WX= W I= , itis called output-normal realization.
Balanced realization can be used in system reduction.

NI MR
XZ A21 A22 X2 b2
y=[c, c,]x

W, =AM, =diag( ,, ,)

X, =A; X +bu

y = C,X.

If 2, is much smaller than X,
the reduced one is close to the original one.

Linear Svstems Perception and Intelligence Laboratory
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Realization using Hankel Matrix

Realization from the Hankel matrix

o(s) = 2o " ok B

(infinite series)
{h(i),i =0,1,---} : Markov Parameters

h(0) = /6,
h(1) =—,h(0) + 5,

h(2) = —a,h(1) — a,h(0) + S, L (M)

h(n) =—ah(n-1)—a,h(n-2)---—, h(0) + B,
h(n+i) =-ah(n+i-1)—a,h(n+i—2)---—e,h(i),i =12,

Perception and Intelligence Laboratory
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Realization using Hankel Matrix

Hankel matrix (m x n order)

" h() h@) - h(n)
h(2 h(3
T(m,n):= (: ) 3
' h(m) h(m+1) --- h(m+n-1) |
(1" h(0) is not involved)
Linear Systems 39 Perception and Intelligence Laboratory
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Realization using Hankel Matrix

Theorem
Proper transfer function g(s) has degree n iff
poT(n,n)=pT(h+k,n+1)=n Vv k,1=12,3

Pf)
(=) If degg(s)=n

n

h(n+1i) = Z—ajh(n +1—J) (B, are not involved)

j=1

fori=12,---

—> (n+21)th row of T(n+1, o) can be written as
a L.C. of n rows of T(n, )

—> pT(Nn,©) = pT(N+1,0)

—> pT(nN+1,0)=pT(N+1+1,0), 1=1,2,---

— pT(n,0) = pT(0,0)

Perception and Intelligence Laboratory
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Realization using Hankel Matrix

—> pT(n,0)=n(.-o/w 3 n < n satisfying)

— pT(n,n)=pT(n+k,n+1)=n VKk,I
(<) pT(N,N) = pT(n+k,n+1)=n

implies 3 {aj} E)

n

h(n+i):Z—aj-h(n+i—j)

=1

If we find {5} using ()

O an S" -+
9(s) = Y h()s = L2 Lt
i—0 S +alS +"'+an
—degg(s) =n
' /i L
Linear Systems 21 Perception and Intelligence Laboratory
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Realization using Hankel Matrix

Row Searching Algorithm, Appendix A in 2nd Ed.

1 -1 2 -2 1
1 -1 4 -2 4
T=|-1 -3 8 -6 6
5 1 -4 10 1
7 1 -2 10 4
1 17 [-1 -1 2 —2 17
—2 1 3 1 0 2 2
kT =| —4 1 T={3 -1 0 2 2|=T,
2 1 3 1 0 6 3
1 1| |6 0 0 8 5
L ar Systoms o Perception and Intelligence Laboratory
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Realization using Hankel Matrix

Linear Systems

-1 1

43

© O O

© O O w

-1 2 -2 1
1 0 2 2

0 0 0 O|=T,

2 0 4 1

2 0 4 1]
-1 2 -2 17
1 0 2 2
0 0 0 O
2 0 4 1
0 0 0 O

Perception and Intelligence Laboratory
School of Electrical Engineering at SNU



Realization using Hankel Matrix

k = k,k;k,k;
o
a
z If i-th row is
KT =| : A
: dependent row, & =0
_an_
B 7 j=i—1
1 0 00 a=> ka +a =0
1 O O ]
“=l. « 0|~ g
g 1 a =— Z k;a,
| _ J
Q
a2
[ ky ki -+ kgy 1 0 0 O] 2(=0
_an_
Linear Systems 24 Perception and Intelligence Laboratory
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Realization using Hankel Matrix

Consider s.e. {A,B,C,D}

g(s)=D+C(sl —A)'B=D+s'C(l —s*A)'B
=D+CBs ™ +CABs”? +CA”°Bs°---

= {A,B,C, D} is arealization of g(s) iff
D=h(0)&h(i)=CA'B i=12,.--

Realization:
{A,B,C,D} « h(i) =CA™'B <« g(s) = > _h(i)s™ « g(s)

Perception and Intelligence Laboratory
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Realization using Hankel Matrix

Here, g(s)—*2 > {A B,C,D} realization

Letg(s) = % deg D(s) =n

(may not be coprime) (degg(s) <n)

Determine deg g(s) (Hankel matrix Rank check)

- h@©) h(n) |
: : } o LI rows
n+1—o LD rows

T(n+1n)=

| h(n+1) h(2n)
where o can be determined by row searching algorithm,
[h(c+1) .. h(20)] is primary dependent row.

Linear Svstems Perception and Intelligence Laboratory
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Realization using Hankel Matrix

Note: If D(s) & N (s) are coprime, o =n
otherwise o <n.

—>[a, a, -~ a, 1 0 --- 0]T(n+Ln)=0
If o =n, h(n+1) = —a,h(n) —a,h(n—1) —...— cz h (1)
—>a,=a,;i=L--n

If o <n, h(c+1) = —i a h(i)

sa za, .,i=1--n

n—i?

Perception and Intelligence Laboratory
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Realization using Hankel Matrix

Claim:
[0 1 0 | - h(1) |
: 0O 1 h(2)
A= ] B=| |
0 0 O 1 :
—a, —a, —a, | | h(o) |
C::l O --- e ... ()], D = h(0)

Is controllable & observable.

Perception and Intelligence Laboratory
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Realization using Hankel Matrix

Since h(o +i) = —a,h(c +i—1) —a,h(c+i—2)---—a_h(i)

i=1,2,3--

[ h(2) ] [ h(3) | (h(k+1)

AB — AZB = h(:4) L AKR — h(k:+2)
| h(o +1i) |  h(o+2) | ' h(k+0o)

c=ft 0 )
— CB =h(1),CAB =h(2),---CA°B=h(3)---
= {A,B,C, D} is realization of g(s)

Linear Svstems Perception and Intelligence Laboratory
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Realization using Hankel Matrix

Controllability matrix
A’'B | =T(o, o) = controllable
Observability matrix

[B AB

C
CA

CAO‘—l |

1

1

—> observable

If Ais realized by n > o, {A,B} is not controllable,

but {A,C} is observable. — Observability Realization

T(o,0) =OC.

Linear Systems
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Realization using Hankel Matrix

On the other hand,

o) —a, 1
1 O : o)
1 - . .
A - , B =
10 1 -a,| | O |
C=:h(1) h(a)]
Linear Systems 51 Perception and Intelligence Laboratory
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Realization using Hankel Matrix

1 O
0O 1
:>C:[B AB e eee een Aa—lB]: 0 0
0 :
0 0 1
- o -
CA
O = . =T(o,0)
| CA“ |

— Always controllable — Controllability Realization
T(o,0)=0C.

Linear Systems
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Realization using Hankel Matrix

1  h@@) .. h(o)
T(o,0) =0AC =
-a, -a,, -a,, || h(o) .. h(Qo)]
h(2) ... h(c+1) |
h(o+1) .. h@2o+1)

AT(o,0)=T(o,0)
A=T(oc,0)*T(o,0)

If we know o, we can determine A.

Perception and Intelligence Laboratory
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Realization using Hankel Matrix

Example 7.2

4s* —25—6

g(s) =

25 +25° +25° +35+1

=05t +25°—-35°-25*+25>+355° +...

0 2 -3 -2]

2 3 -2 2
TAH= 5 5 5 35/
2 2 35 ..

(o -3

A=T(3,3T'33)=|-3 -2

b=[0 2 3], c=[L 0 0]

Linear Systems

2 2

pT(4,4)=3=0c=degqg(s)

54

-3 0 1 0
2| =0 01
2| |-05 -1 0
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Realization using Hankel Matrix

Example 7.2 (cont)
Without calculating T(3,3)T(3,3), by row searching algorothm

(1 0 0 O ¢, #0
1 0 0 c,#0
T(4,3)= 2

e o 10 (;3750

a8, a, a 1] 0
a, a, a 1|T(4,3)=0, by transpose,

0 2 -3 -2] :3
T(314)a-: 2 _3 —2 2 2 :O

3 2 2 35

a is null vector of T(3,4).

Perception and Intelligence Laboratory
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Realization using Hankel Matrix

Balanced Form

T(o,0)=0C.

T(cAE)=KA ‘A LY? ¥2

O=K ""a@d & 17"
T(o,0)=0AC > A=0"T(o,0)C™*
Ax KT' (o,BA Y2

CCA LA YA
OO KKA YA
— Balanced Realization

Perception and Intelligence Laboratory
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Summary

Realizations of g(s) =

B.S> + .5+ J,

s° +a,8° +a,s+a,

(assume coprime)

Controllable form

Observable form

0 1 0 0 0 —a,| oA
A= o) 1 (,B=|0 A=|1 0 —o, |, B=| 4,

| —a; —a, —a] 1] 0 1 —o e
C::,b’3 5, ,6’1], D =h(0) C=[O o) 1], D =h(0)
Controllability form Observability form

(0 0 —a, | 1 0 1 |  h(D) |
A=|1 0 —o, |, B=|0 A = 0 1 [,B=|h(2)

0 1 -« 10 -, —a, -] | h(3) |
C= :h(l) h(2) h(3)], D = h(0) C=[1 o) O], D =h(0)

Linear Systems
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HW 7-2

Show that the two state equations

xzﬁ ﬂmmu y=[2 2]x

xz[_zl _OJHHU y=[2 0]x

are realizations of (2s+2)/(s* —s —2).
Are they minimal realization?
Are they algebraically equavalent?

and

Perception and Intelligence Laboratory
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Degree of Transfer Matrices

Definition: MIMO case

Degree of a proper rational matrix é(s)
Is defined as the degree of Least Common Denominator (LCD)

of all coprime minors of é(s).

Perception and Intelligence Laboratory
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Degree of Transfer Matrices

Example
1 1
2 s+1 s+1
G, (s) =
TOR
' s+1 s+1_

The minors of order 1 :

= 5(G,) =1

Linear Systems

s+1 s+1
The minors of order 2 : O

LCM of denominators =s+1= A(S)

Perception and Intelligence Laboratory
School of Electrical Engineering at SNU



Degree of Transfer Matrices

Example
2 1
2 s+1 s+1
G,(s) =
»(S) 1 1
| s+1 s+1_

The minors of order 1 :

(s+1
The minors of order 2 : 5
(s+1)
= LCM of denominators = (s +1)°
= 0(G,)=2
Linear Systems 61 Perception and Intelligence Laboratory
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Degree of Transfer Matrices

Example 7.5 _ 5 1 n
é(s)z s+1 (s+1)(s+2)s+13

-1 1 1

| s+1 (s+1(s+2) s

Linear Systems

1x1 minors: entries

(s+79) \
(s +1)(s+D(s +2)

2x 2 minors : A(S+4) > <= (all should be coprime)
B(s+1)(s+3)

3
s(s+1(s+2)(s+3)
LCD of all minors =s(s+1)(s+2)(s+3)

:>5(é):4

Perception and Intelligence Laboratory
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Minimal Realizations-Matrix Case

Minimal Realizations-Matrix Case

Theorem 7.M2
{A, B, C, D} is aminimal realization of G(s) iff
{A, B} is controllable and {A, C} is observable or iff
dim A =deg G(s).

Perception and Intelligence Laboratory
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Minimal Realizations-Matrix Case

Pf. of Theorem 7.M2
(=) If not controllable or observable, There exists a zero state

equivalent equation with lesser dimension which is not minimal.

(<) If not minimal, 3 {A, B, C, D} with i < n, Theorem 4.1 implies
CA"™B=CA"™B form=0,12,...
OC=0,C, (*)
where O, C, O,, C_ are, respectly, nqxn,nxnp,ngxm, and im x np.
Using Sylvester inequility
p(0,)+ p(C,)—n < p(O,C,) <min(p(0,), p(C,))

which is proved in [6], and p(O,) = p(C,) =1, we have p(O.C_ ) =T.

From (*), p(OC) = p(O,C )=n<n.

This implies {A, B, C, D} is not controllable or observable.
The remaining part will be given in the remainder of this chapter.

Perception and Intelligence Laboratory
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Minimal Realizations-Matrix Case

Theorem 7.M3
All minimal realizations of G(s) are equivalent.
Pf.
Consider two minimal realizations {A, B, C, D} and {A, B, C, D}.
OC =0C
O'OCC’=0'0OCC’
(O'0)'0'0O=CC'(CC)H ' =P
OAC =0OAC
O'OACC’ =0O'OACC’
A =(0O'0)'O’'OACC'(CC')* =PAP™
This shows {A, B, C, D} and {A, B, C, D} are equivalent.

Perception and Intelligence Laboratory
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Minimal Realizations-Matrix Case

Exmaple 7.6 B
4s—-10 3
2s+1 S+2

G(s) = 1 1
| (2s+1)(s+2) (s+2)*

JA(S) = (2s +1)(s + 2)?

Minimal realization has 3-dimension.
6-dim. in (4.39) and 4-dim. in (4.44) are not minimal.
By Matlab, [am,bm,cm,dm]=minreal(a,b,c,d);

-0.8625 —4.0897
x=| 0.2921 —3.0508
| —0.0944 0.3377

y:

Linear Systems

0O -2.1031 -0.5720

3.2544 | [ 0.3218 —0.5305]
1.2709 |x+| 0.0459 —0.4983 |u
—0.5867 | —0.1688 0.0840

66

[0 —0.0339 35.5281} [2 O}
X+ 0 0 u
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Matrix Polynomial Fractions

Matrix Polynomial Fractions
G(s) = N(s)D*(s)

Example 7.5 can be expressed as a right fraction

(s+1
G(s) = s 1 S 0
-1 1 s+3 0

G(s) = D'(s)N(s) is called a left fraction.

0
(s+1D(s+2)
0

G(s) =[N(S)R(S)][N(S)R(S)]”

= N(s)R(S)R*(s)D*(s) = N(s)D*(s)

— Right (left) fraction is not unique.
— Right (left) coprime fraction is needed.

If D(s) = D(s)R(s) and N(s) = N(s)R(s),

R(s) is called common right devider.

Linear Systems

67

-1

0
0
s(s+3) |

A(s) =B(s)C(s)

B : left devider of A

C :right devider of A
A :right multiple of B(s)
A : left multiple of C(s)

Perception and Intelligence Laboratory
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Matrix Polynomial Fractions

Definition 7.2 A square polynomial matrix M(s) is called a
unimodular matrix if its determinant is nonzero and
Independent of s

Examples of unimodular matrix

2s s°+s+1| |2 s¥+s+1 s s+1

2 s+1 | | O 3 "|s-1 s
Products of unimodular matrices are clearly unimodular.

det M, (s)det M, (s) =det|M,(s)M,(s)|=c =0

Inverse of unimodular matrix is unimodular.
det M(s) det M *(s) = det| M(s)M(s) | =det | =1

Perception and Intelligence Laboratory
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Matrix Polynomial Fractions

Definition 7.3 A square polynomial matrix R(S) is a greatest
common right divider (gcrd) of D(s) and N(s) if

1) R(s) is common right divider (crd) of D(s) and N(s)
2) R(s) is left multiple of every crd of D(s) and N(s)
If a gcrd is a unimodular, D(s) and N(s) are right coprime.

Left coprime can be defined in a similar manner.

Greatest common right(left) devider M(s) is unimodular in
N, (s) =N, (s)M(s), D,(s) =D, (s)M(s) or
N, (s) = M(s)N, (s), D, (s)=M(s)D,(s),

where det M(s) is independent of s.

Perception and Intelligence Laboratory
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Matrix Polynomial Fractions

Definition 7.4:
G(s) =N, (s)D,*(s) =D, (s)N,(s)

right coprime left coprime

—> Characteristic polynomial =det D, (s) =det D, (s)
— deg G(s) =deg det D, (s) =deg det D, (s)

G(s) = N(s)D(s) =[N(s)R(s)][D(s)R(s)]
Define D,(s) = D(s)R(s), N,(s) = N(s)R(s)

det D, (s) = det[ D(s)R(s)] = det D(s) det R(s)
degdet D, (s) = degdet D(s) +degdet R(s)

If R(s) is unimodular, degdet D,(s) = degdet D(s)
Then D,(s) and N,(s) are right coprime.

Perception and Intelligence Laboratory
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Matrix Polynomial Fractions

Column and Row Reducedness

Degree of polynimial vector: the highest power in all entries.
o.M (s) = degree of ith column of M(s) : column degree
o.M (s) = degree of ith row of M(s): row degree
1 s°-2 -1
M(s):[s+ S 2s+5 }
s—1 S 0

—>38,=1 8,=3, 5,=0, 5,=3, 5.,=2

Perception and Intelligence Laboratory
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Matrix Polynomial Fractions

Definition 7.5
A nonsingular polynomial matrix M(s)degree is

column reduced if

deg det M(s) = sum of all column degrees.
It is row reduced if

deg det M (s) = sum of all row degrees.

Example:

M(s)={

3s°+2s 2s+1
s°+s—-3 s }
A(S)=s>—s’+55+3=degA(s) =5, +35,, =2+1
— column reduced
—degA(S)#6,,+0,,=2+2
—> not_row reduced

Perception and Intelligence Laboratory
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Matrix Polynomial Fractions

M (s) can be expressed as
M(s) =M, H_(s)+ M, (s)

3 2|ls* O 2s 1
M(S):[l 1}{0 5}{5—3 o}

\u nonsingular <> column reduced
or can be expressed as

M(S) - Hr(S)Mhr +er(s)

Example :

Example:
s> 0|3 O 2s  2s+1
M(s) = ) +
0O s°{/1 O s—3 S
\u singular <> not row reduced
Linear Systems - Perception and Intelligence Laboratory
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Matrix Polynomial Fractions

G(s) =N(s)D (s ) =D (s)N(s)
right coprime left coprime

D(s): column reduced, D(s): row reduced
—

deg G(s) = sum of column degrees of D(s)

= sum of row degrees of D(s)

If G(s) is strictly proper, then

o N(s) <o,D(s), 1=12,...
The converse is not necessarily true, ex,

N(s)D(s) =[1 2]{ 52 s—1}‘:[—23—1 2sz—s+1}

s+1 1 1 1
The reason is that D(s) is not column reduced.

Perception and Intelligence Laboratory
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Matrix Polynomial Fractions

Theorem 7.8
If D(s) is column reduced, then
N(s)D*(s) is proper (strictly proper) iff
SiN(s) <6,D(s) [J,N(s)<5,D(s)] fori=12,3,...

Pf.
Necessity part follows from the preceding examples.
To show sufficiency,
D(S) — Dthc (S) + ch (S) — |:Dhc + ch (S)Hgl(S)] Hc (S)
N(s) = N H () + Ny (8) =| Ny + N, (S)H(5) |H,(5)
_ -1
G(s) :==N(s)D*(s) = Ny + N, (S)H*(s) || Dy + Dy (S)H(S) |
limG(s)=N,_D,.
D.. is nonsingular since column reduced
—> proper
N,. =0 for o,N(s) < 5,D(s)
—> strictly proper
Linear Systems - Perception and Intelligence Laboratory

School of Electrical Engineering at SNU



Matrix Polynomial Fractions

Corollary 7.8
If D(s) is row reduced, then
D' (s)N(s) is proper (strictly proper) iff
5,N(s)<5,D(s) [ 5:N(s) <&5,D(s) | fori=1,2,3,...

Perception and Intelligence Laboratory
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HW 7-3

Find the characteristic polynomials and degrees of

the following proper rational matrix of

G(s) =

1 S+3 1
(s+1)° s+2 s+5

1 s+1 1

 (s+3)° s+4 s

Use two methods: minors and column degrees.

You may use Matlab for coprime fraction.

Linear Systems
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Matrix Polynomial Fractions

Computing Matrix Coprime Fractions
For the given left fraction D (s)N(5s),
not necessarily left coprime,
we can find the right coprime fraction N(s)D ™ (s)
G(s) =D ' (s)N(s) = N(s)D(s)
N(s)D(s) = D(s)N(s)
D(s)(—=N(s)) + N(s)D(s) =0

where
D(s) =D, +D,s+D,s* +D,s’ + D,s"
N(s) =N, +N,s+N,s* +N,s* +N,s”

D(s) = D, + D,s + D,s* + D,s°
N(s) = N, +N,;s+N,s* + N,s°

Perception and Intelligence Laboratory
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Matrix Polynomial Fractions

SM =

S: Generalized resultant: 8gx4(q+ p)

o
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D, :gxqg, N.:gxp, D,:pxp, N :gxp
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0 0 ][-N,
0 o0 | D,
0 0 | -N,
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i Matrix Polynomial Fractions

Example 7.7
[ 4s-10 3 ]
2s+1 S+2
G(s) = 1 s+1
| (2s+1)(s+2) (s+2)*
25 +1)(s + 2 0 -
G(s) | @ +DE+2) 2
0 (2s+1D(s+2)
4s —-10)(s+ 2 3(2s+1 _ _
X ( )( + ) ( ) — D—l(S)N(S)
S+ 2 (s+1)(2s+1)
Linear Systems 80 Perception and Intelligence Laboratory
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Matrix Polynomial Fractions

_ 2s®> +55+2 0
D(s) = s g2
0 25°4+9s“ +12s+4

2 0 5 O 2 0|, |0 O],
= + S+ s® + S
O 4 0 12 O 9 O 2

2_ —_—
N(s)z 4s5- —2s—-20 263+3
S+ 2 2S°+3s+1
-20 3 -2 6 4 0], O O,
= + S+ S° + S
2 1 1 3 0O 2 0 2
By Matlab,

[, r]=ar(S) >S=qr

Linear Svstems Perception and Intelligence Laboratory
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Matrix Polynomial Fractions

iPrimary dependent 772 vector

|d1 O X X X X O i
O d2 X X X x x|0 X X X
s] Orl O n. x X X X X| X X X X
0] O O n2 x X X X| X X X X
O O O O dI x x X| x X X X
O O O O 0 d2 x x| x Xx X X
"“lo o o 0o 0 0 M x|x x x x
0 0 O O 0 0 0O O] x x x 0
0] 0] O O 0 0 O O diI x x O
0] 0] O O 0 0 O 0O O d2 x O
0] 0] O O 0 0 O 0O O O O O
0] 0] O O 0 0 O 0O O O O O
~ z1=null(s1), z1b=z1/z1(8) for making monic vector
s Systome . Perception and Intelligence Laboratory
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Matrix Polynomial Fractions
Primary dependent 71 vector

|
|d1 O X X X x 0 x|x
O d2 X X X X 0] X X | X
g2 Or2 O n. x X X X X X X|Xx
0] O O n2 x X X X X X | X
O O O O diI x «x X X X |X
O O O O O d2 «x X X X|Xx
"“lo o o o 0 o0 m x  x  x|x
0 0 0O O 0 0 0 X X XxX|0
0 0 0O O 0 0 0 di x x|0
0 0 0O O 0 0 0 O d2 x |0
0 0 0O O 0 0 0 0 O 0]0
O 0 0 0 0O 0O 0 O O O 0 O
~ z2=null(s2), z2b=22/z2(10) for making monic vector
s Systoms . Perception and Intelligence Laboratory
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Matrix Polynomial Fractions

_no no 10 7
—N, —ng"  —ng’ ~0.5 -1
dit  dg? 1 1
D, d021 dozz 0 5
-nt -n’ 1 -4 71b=z1/71(8)
_Nl 21 22
I B e O O 0] o)
11 12
D, " 4 2> 2 22b=22/72(10)
az a2 | [(0 1
NI I 2 0
—nit  —nZ? 0 0
D, | | dy  d 1 0
d;t d* | L O 0
Linear Systems 84 Perception and Intelligence Laboratory
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Matrix Polynomial Fractions

1 1] [25 2 1 0],
D(s) = + S+ S
0 2 0 1 0 0
B (s2+255+1 2s+1]
i 0 S+2 |
10 -7 [-1 4] [2 07,
N(s) = + S+ S
05 1 0 0] |0 O
|2s*-s-10 4s-7]
05 1
G(S)_‘(zs—s)(s+2) 4s—71[(s+2)(s+0.5) 2s+1|"
| 0.5 1 0 S +2

column degrees 4, =2, 1, =1, degdetD(s) =2+1=3

Perception and Intelligence Laboratory
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Matrix Polynomial Fractions

Note:

deg G(s) =degdet D(s) = > _ 1,
= total number of linearly independent N -columns in S

0 0 1
P=|1 0 O
0 1 0]

G(s) = N(s)D*(s) =[N(s)P][D(s)P] " = N(s)D*(s)
The columns of N(s)D(s) can be arbitrarily permutated.

Perception and Intelligence Laboratory
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Matrix Polynomial Fractions

Theorem 7.M4
Let G(s)=D*(s)N(s) be a left fraction,not necessarily left coprime
Let «,i=1,2,..., p, be the number of linearly independent N, — columns.
deg G (S) = a4 + 1, +-+++ 41,
A right coprime fraction N(s)D*(s) can be obtained by computing
p monic null vectors using p matrices formed from

each primary dependent N, —column and its LHS LI columns.
Note:

The column-degree coefficient matrix D,

can be a unit upper trangular matrix.

1 2
D,. :[O 1}:column echelon form

— Realization will be nicer.

Perception and Intelligence Laboratory
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Matrix Polynomial Fractions

Dual: Compute a left coprime fraction D (s)N(s)
from a right fraction N(s)D*(s)

Linear Systems

| -N,D,:-N,D,i—N,

D,
Ny

o)

o

Dl
N,

N,

D,

D,
N,

RY,

2

z U Ul

i

N.D, |T=0
0O 0 0]
0O 0 O
D, 0 O
N, 0O O
D, D, O
N, N, O
D, D, D,
I\|2 N3 N4_
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Matrix Polynomial Fractions

Corollary 7.M4

Let G(s)=N(s)D*(s) be a right fraction,not necessarily right coprime

Letv.,i=12,...,q, be the number of linearly independent Ni —rows in T.
degG(s) =V, +V, +---+V,

A left coprime fraction D' (s)N(s) can be obtained by computing

g monic null vectors using q matrices formed from

each primary dependent N, — rows and its preceeding LI rows.

Note:
The row echelon form can be also defined.

Perception and Intelligence Laboratory
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i Realizations from Coprime Fractions

Realizations from Coprime Fractions
G(s) = N(s)D ' (s)

o[ s

gt 0 s° 0

: : s 0

1 0] s O

(5) 0 sttt 1 O
: : 0O s

o 1] |0 1]

y(s) = N(s)D™*(s)u(s)
v(s) = D' (s)u(s) = D' (s)v(s) = u(s)
y(s) = N(s)v(s)

Linear Systems 90
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i Realizations from Coprime Fractions

Define state variables

_Sﬂa—l 0 -
1 0 || wi(s)
X(s) =L(s)Vv(s) =
()=LEVE) =| ., [VZ (S)}
SPv,(s) | [ x(s) [V ]
S(s) || %(9) v,
X, (S \
RIEAONIN RO SR
v, (s) X, (S) Vi
SV, (s) X5 (S) Vy
| V,(8) | [ X% (s) | | Vs |
Linear Systems 91 Perception and Intelligence Laboratory
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Realizations from Coprime Fractions

X:I.(t) — V1(3) (t) X5 (t) = \ (t) X3 (t) = \ (t) Xy (t) = \ (t)
X5 (1) =V, (t) Xs (1) =V, (t)

Xo =X X=X, X,=X; Xg=2X

To develope x;, and X,

D(s) = D, ;H(s) + D, L.(s)

[D,H(s)+ D, L(s)]Vv(s) =u(s)

H(s)v(s) + D 'D,.L(s)v(s) =D "u(s)

H(s)v(s) =—-D 'D.x(s)+ D u(s)

D;1D|c _ |:a111 G Oz Qg Gy 0‘122:|

Uy U1y Oyi3 Uy Uyyy Uy
1 b
1. 2
Dhc o |:O 1

Linear Systems 92
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Realizations from Coprime Fractions

s, (8)
S5 (S)

o)

y(s) =

Linear Systems

18111
_16211

18111
_18211

A1 g g3
| U1y Apip (o3
1 b,

2

u(s)

O 1
A1 Ay g3
| U117 p1p g3

18112
18212

18112
18212

P
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Realizations from Coprime Fractions
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Controllable canonical form
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Realizations from Coprime Fractions

Example 7.8
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Realizations from Coprime Fractions
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Realizations from Coprime Fractions
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Observable canonical form can be obtained by using
Left coprime fraction.
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Realizations from Coprime Fractions

Note:
Let {A, B, C, D} be a minimalrealization
C(sl—A)'B+D=N(s)D(s) =D (s)N(s)
which implies
1
det(sl —A)

————[ Adj(D(s)) |N(s)

1
det D(s)

C[Adj(sl —A)]B+D = N(s)[Adj(D(s))]

det D( )

+deg G (s) = deg det D(s) = deg det D(s) = dim A <« Proof of Theorem 7.M2

«characteristic polynomial of G(s) = k, det D(s) = k, det D(s) = k, det(sl — A)
*the set of column degrees of D(s) = the set of controllable indices of (A, B)
*the set of row degrees of D(s) = the set of observability indices of (A, C)
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HW 7-4

Find a right coprime fraction of

[ s24+1 2s41]

s> 52

CE= T,
| s? s

and then a minimal realization.
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Realizations from Matrix Markov Parameters

Realizations from Matrix Markov Parameters
G(s)=H@s*+H(@2)s2+H(B)s 3 +---

(H@) H(@) HE) - H(r)
H(2) HE®) H4) -+ H(r+1)
T=H®@) H() HGBG) - H(r+2)
_Hkr) H(r+1) H(r+2) --- H(@2r-1)
[ H(2) H(3) H(4) - H(Ir+1)]
H(3) H(4) H(GB) -+ H(r+2)
T=| H(4) H(5) H®G) -~ H(r+3)
_H(r.+1) H(r.+ 2) H(r.+3) H(ér) |
T=0C and T=0AC —>O'TC'=0'OACC’

Linear Systems

—> A=(0'0)*oTc/(ccH
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Realizations from Matrix Markov Parameters

Theorem 7.M7

A strictly proper rational matrix G(s) has degree n iff
the matrix T has rank n.
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Realizations from Matrix Markov Parameters

By singular value decomposition,

A0
T=K L’

Choosing nonsingular part (n—dim),
T=AK_ ANAL Y* "*'=0cC
O=KAAXLand C= "*"

O =[ (ARYAARK V2|7 ( ¥2y ™

O+ :AF%Z_’
C*=LAY?
A=0"TC"

B = first p columns of C
C =first q rows of O

0’0 = AR KAA Y2 =
CC’' = AP LAA Y2 =
<— Balanced realization
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Summary

Degree of transfer function

Coprimeness and minimal realization

Computing Coprime fraction (Sylvester matrix)

Controllable form, Observable form

Controllability form, Observability form (from Henkel Matrix)
Balanced realization

Degree of transfer function matrix, Unimodular

Greatest common right divisor, Left(right) multiple
column(row) degree, column(row) reduced,

Coprimeness of transfer function matrix,

Computing Right(Left) coprime fraction

Minimum realizations(controllable/Observable/Balanced-Henkel)
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