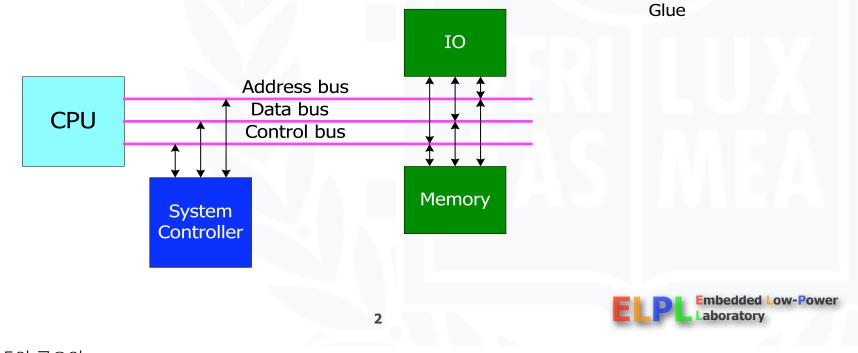
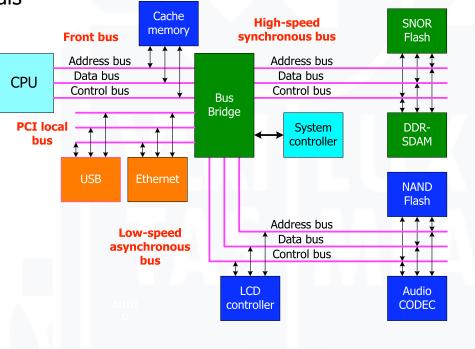
Embedded System Application 4190.303C 2010 Spring Semester


History of Microprocessors for Embedded Systems

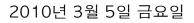
Naehyuck Chang Dept. of EECS/CSE Seoul National University naehyuck@snu.ac.kr


Computer System Architecture

- Conceptual configuration
 - Central processing unit
 - Memory
 - Inputs and outputs
 - System controller
 - Wrapper or glue

Computer Architecture

- Practical configuration
 - Multiprocessors or coprocessors
 - Memory hierarchy
 - Bus hierarchy
 - Types of memory devices: RAM, ROM, etc.
 - High-speed and low-speed peripherals


Embedded Low-Power

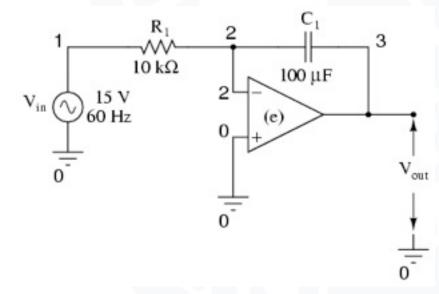
Embedded System Architecture

- Embedded (computer) systems are computers
 - Have all the necessary components
 - ♀ CPU, memory, IO, etc.
- Embedded systems have specific dedicated applications
 - May have imbalanced architecture
 - Small RAM and big ROM
 - Slow CPU but fast memory
 - 8 bit CPU but with a 32 bit graphics accelerator
 - May have special peripherals
 - A/D converters
 - Special sensors
 - Special communication adapters
 - Special hardware support
- Embedded systems are optimized
 - May not have peripherals for development
 - ♀ No keyboard, no mouse, no display, etc.
 - ♀ Not enough memory for compliers, etc.

mbedded Low-Power

Rule of Thumb

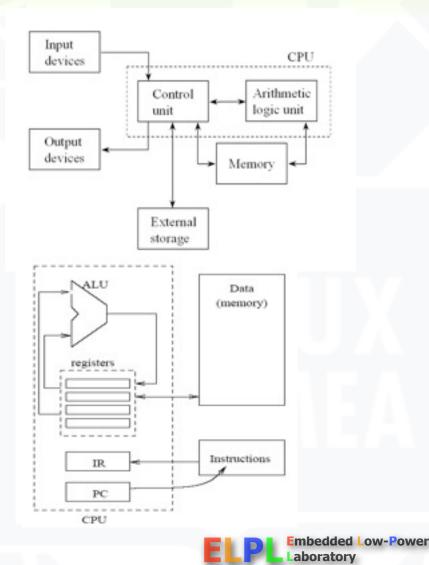
- Better embedded system architecture design
 - Need to understand computer system architecture
 - Need to understand system software
 - Need to understand application
 - Domain knowledge
 - Need to understand hardware to application
 - Vertical optimization
 - Need to understand technology



Analog Computers

☑ Integration

$$V_{out} = \int_0^t 15\sin(2\pi \times 60t)dt$$



2010년 3월 5일 금요일

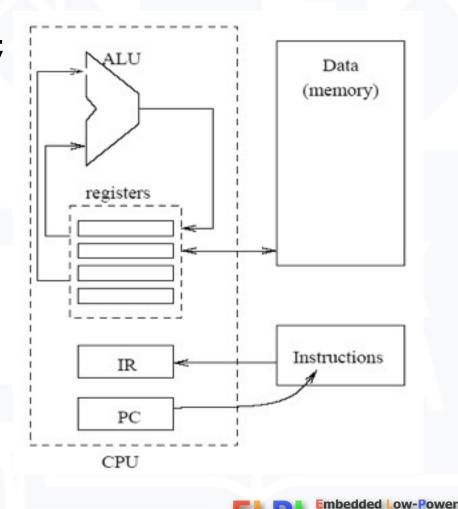
Embedded Low-Power

Stored Program Control by Von Neumann

- Register
 - A memory location in the CPU
- PC
 - Program counter that holds the memory address of the next instruction
- ♀ IR
 - Instruction register that holds the current instruction
- Acc
 - Accumulator that holds the result of an operation performed by the ALU
- Register File
 - A collection of several registers

Hardwired Logic versus Microprocessor

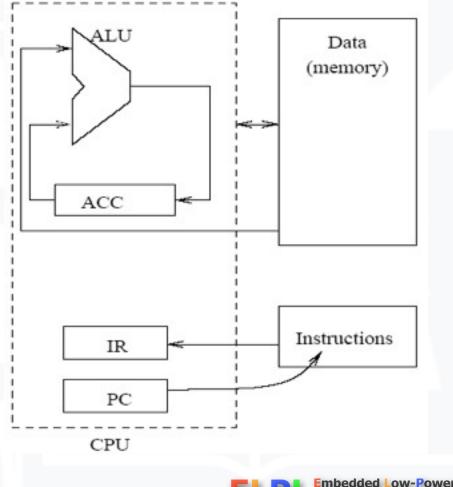
- Hardwired logic
 - Parallel architecture for the next state forming and the output forming logic
 - Fast but complicated
 - Not good scalability
- Microprocessor
 - Sequential execution for the next state forming and the output forming logic
 - Slow but simple structure
 - Good scalability with an expense of speed


mbedded Low-Power

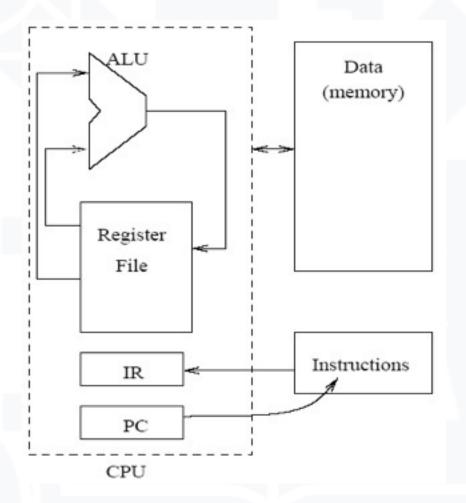
Stored Program Control by Von Neumann

pc= 0;

do {


instruction = memory[pc++]; decode(instruction); fetch(operands); execute; store(results); } while(instruction != halt);

Accumulator Architecture


- Has a special register, called an accumulator
- Combined with another operand as input to the ALU, with the result of the operation replacing the contents of the accumulator
- Operation
 - Place one of the numbers into the accumulator (load operand)
 - Execute the add instruction
 - Store the contents of the accumulator back into memory (store operand)

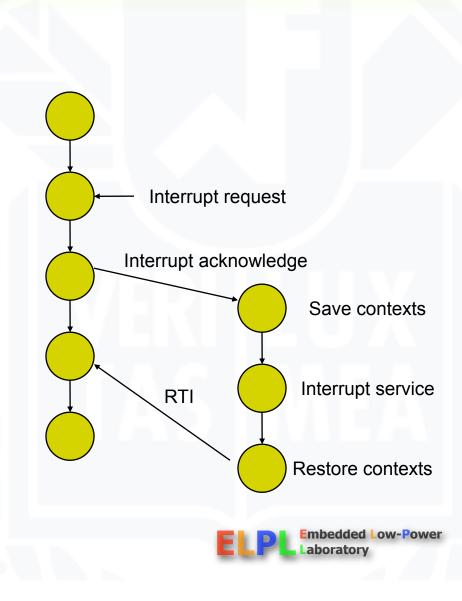
Load/store (Register) Architecture

- Registers
 - Faster access but are expensive
 - For frequently accessed data
- Memory
 - Slower but less expensive
- Principle of "locality"
 - At a given time, a program typically accesses a small number of variables much more frequently than others
- Loads and stores the registers from memory
- Arithmetic and logic instructions operate with registers, not main memory, for the location of operands

Embedded Low-Power

Before Microprocessors (Prehistory)

- Central processing unit is composed of discrete components
 - Vacuum tubes
 - Transistors
 - General Systems are too expensive to be embedded in a system
- Central processing unit is composed of MSI (medium scale integrated circuits)
 - Westinghouse 2500 computer
 - One to four 19" lacks compose of a CPU
 - Magnetic core main memory
 - Power plant control
 - Equipped with most user interface components
 - Imbalanced architecture
 - - Thousands of sensors and actuators
 - Many monitors
 - Special hardware support for SOE (sequence of event)
 - Special software feature
 - Real-time operating system



mbedded Low-Power

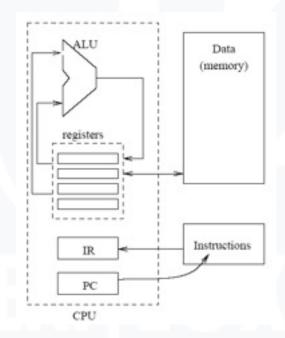
Exception and Interrupt Processing

13

- Program is for sequential execution
- Types of exception and interrupts
 - Reset
 - Hardware interrupt
 - Software interrupt
 - Exception
 - Overflow
 - Divide by zero

Exception and Interrupt Processing

- Sessential for handling of errors and asynchronous events
 - Polling and interrupt
- Context
 - Microprocessor has long-term memory problem
 - Problematic long-term memory: relies on external storage
 - Remember only short-term memory contents
- Precision interrupt for embedded systems



- ☑ All the microprocessors are for embedded systems

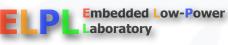
 - No peripherals, no memory
- Intel 4004 was a 4-bit CPU designed for usage in calculators
 - Clocked at 740 KHz

 - Perfect fit for calculators but not very suitable for microcomputer use due to limited architecture
 - No interrupt support
 - 3-level deep stack
 - Complicated method of accessing the RAM

2010년 3월 5일 금요일

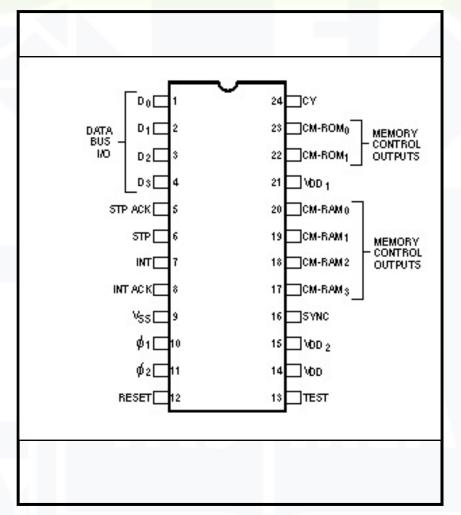
Intel D4040: a practical successor of i4004

Features	4004	4040		
Program memory	4 KB	8 KB (two 4 KB banks)		
Stack memory	3 levels	7 levels		
Registers	16 index registers	24 index registers (two banks - 16 and 8 registers)		
		16 additional instructions (see below)		
		AND and OR logical instructions		
Instructions		Interrupt-related instructions		
		ROM and index bank selection instructions		
		Two new load accumulator instructions		
Interrupts	None	Program can be interrupted by external signal		
		STP - switch processor to STOP mode		
		STP ACK - processor is in STOP mode		
Pins/signals		INT - interrupt input		
		INT ACK - interrupt acknowledge		
		CM-ROM ₁ - ROM bank selection output		
Other features		Single step operation		
Package	16-pin DIP	24-pin DIP		



2010년 3월 5일 금요일

Embedded Low-Power


4008/4009	standard memory and I/O interface set			
4040	4-bit Central Processor Unit with 60 instructions			
4101	256 x 4 RAM			
4201	clock generator			
4265	programmable general purpose I/O device			
4269	programmable keyboard display device			
4289	standard memory interface			
4308	1024-bit mask programmable ROM and four 4-bit I/O Ports			
4316/2316	2048-bit ROM			
4702/1702	2048-bit Erasable and Electrically Reprogrammable MOS ROM (Static)			

- Intel 4040 microarchitecture
 - 8 KB program memory
 - Two 4 KB banks
 - Jump to any address within currently selected bank
 - 640 B data memory

 - A SRC instruction specify address
 - WRM or RDM writes or reads accumulator data to memory
 - Data memory is separate from program memory

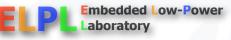
- Stack is 7-level deep 0
 - Separate from program memory and data memory 9
- Interrupts
 - One maskable interrupt can be enabled or disabled by DIN and EIN instructions 9

3 0	3 0 3	0	3 0	3 0
Acc.		181	IRO	IR1
Accumulator	IR2	IR3	IR2	IR3
	IR4	IR5	IR4	IR5
C Carry flag	IR6	IR7	IR6	IR7
	Index Register Bank 1		Index Register Bank 0	
11	PC	<u> </u>	IR8	IR9
	_	IR10	IR11	
Stac	_	IR12	IR13	
Stac	_	IR14	IR15	
Stac	Toda	Index and Scratch pad Regist		
Stac	k Level 4	mule	7	pau Registers
Stac		SRC register		
Stat				
Stap	k Level 7		CL	CM-ROM CM-RAM
Program co	C	Command Line Reg.		

- Intel 4040 microarchitecture
 - 4-bit accumulator
 - Arithmetic and logic operations, reading and writing data from/to RAM and I/O ports
 - 24 4-bit Index registers

 - Lower 8 registers can be selected from bank 0 or 1 using SB0 and SB1 instructions
 - Memory access is not convenient due to short bit width
 - - Data moving instructions
 - Arithmetic add, subtract, increment and decrement
 - Logic rotate, AND and OR
 - Control transfer conditional (limited to current ROM), unconditional, call subroutine and return from subroutine
 - Input/Output instructions
 - Interrupt-related instructions halt, enable, disable, and return from subroutine

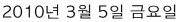
 - Instruction length can be one or two bytes


8 bit microprocessors

- Beginning of microprocessor-based system era
- CPU core only and dedicated peripherals
 - ♀ Serial communication ports, parallel IO ports, timers and interrupts controllers
- Assembly programming and later C programming
- No memory and bus hierarchies
- Representative processors

 - Motorola 6800 series

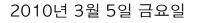
 - MOS Technology 6502



Architecture

- Accumulator, Register and memory
 - Arithmetic and logical operation

 - ADD (\$1000), (\$1001)
- Addressing mode
 - CPU was not faster than memory
 - Both accumulator and register architectures were feasible
 - LD D0, (\$1000
 ADD D1, D0



Embedded Low-Power

- CISC type
 - Complex instructions are added
 - Non-pipelined
 - Block transfer, etc.
- 1 to 8MHz operation
- Usually SRAM is used for embedded applications
 - CPU is capable of 64KB addressing
 - ♀ Commonly 1 to 16KB memory

Embedded Low-Power

Motorola 6800 series

- Accumulator architecture
 - Accumulator A (ACCA) and Accumulator B (ACCB)
 - 8-bit register used for arithmetic and logic operations
 - Memory devices are faster than CPUs
- Index (IX) register
 - 6-bit register for temporary storage or as an index when indexed addressing is used
 ss
- 16-bit Stack pointer (SP)
- Condition code register
 - Half carry (H) set if there was a carry from bit 3 to bit 4 of the result when the result was calculated
 - Interrupt mask (I) set if the IRQ interrupt is disabled
 - Negative (N) set if the most significant bit of the result is set
 - Zero (Z) set if the result is zero
 - ♀ Overflow (V) set if there was an overflow during last result calculation
 - Garry (C) set if there was a carry from the bit 7 during last result calculation

mbedded Low-Powe

Addressing mode

- Implied
 - Data value/data address is implicitly associated with the instruction
 - Accumulator the instruction implies that the data is one of the accumulator registers
 - Immediate
 - 8-bit or 16-bit data is provided in the instruction
- Direct
 - One-byte operand provided in the instruction specifies the memory address in page zero (0000h 00FFh) where data is located
- Extended
 - Two-byte operand provided in the instruction specifies the memory address where data is located
- Relative
 - One byte offset is added to the address of the next instruction (the contents of the program counter register + 2)
 - General Section Se
- Indexed
 - One byte operand is added to the contents of the IX register
 - The resulting 16-bit value is a pointer to memory where data is located

Exception processing

- ☑ IRQ
 - Maskable interrupt
 - Program counter, index register, accumulators and condition code registers are stored in the stack
 - Further interrupts are disabled
 - Processor jumps to memory location address of which is stored in memory FFF8h FFF9h
 - Return from the interrupt the processing routine with RTI instruction

MMI

- Non-maskable interrupt that cannot be disabled
- Program counter, index register, accumulators and condition code registers are stored in the stack
- Further interrupts are disabled
- Processor jumps to memory location address of which is stored in memory FFFCh FFFDh
- Return from the interrupt the processing routine with RTI instruction
- ♀ SWI
 - Software interrupt
 - Invoked from the program
 - Program counter, index register, accumulators and condition code registers are stored in the stack
 - Disables the further interrupts
 - Jumps to memory location address of which is stored in memory FFFAh FFFBh
 - Return from the interrupt the processing routine should use RTI instruction
 - This interrupt can not be disabled.



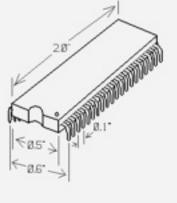
Embedded Low-Power

- MOS Technology 6502
 - Apple Computer
 - ♀ Competitor MOS Technology cloned and upgraded the 6800 with its 6502
 - 8-bit accumulator register (A)

 - 8-bit status register (SR)
 - 8-bit stack pointer (SP)
 - 16-bit program counter (PC)
 - Zero page
 - Subroutine call/scratchpad stack's address space is hardwired to memory page \$01 (\$0100-\$01FF)
 - Scratchpad memory
 - LDA \$00 ; zero page
 LDA \$0000 ; non-zero page

Intel 8080

- Combination of accumulator and register architecture
 - Accumulator and six 8 bit registers


 - Pairs BC, DE and HL could be combined as 16 bit registers
 - Data moving instructions
 - 16 bit stack pointer
 - ♀ 8 level internal stack of the 8008
 - 6 bit program counter
 - Register addressing
 - Register references the data in a register or in a register pair
 - Register indirect instruction specifies register pair containing address, where the data is located
- ☑ I/O mapped I/O
- No zero page
 - processor always uses 16-bit addresses for data access
 - Zero page is reserved for vectors and RST instructions

mbedded Low-Powe

- ☑ Zilog Z80
 - Eight real improvements over the 8080:
 - An enhanced instruction set including new IX and IY index registers and instructions for them
 - Two separate register files, which could be quickly switched, to speed up response to interrupts
 - Block move, block I/O, and byte search instructions
 - Bit manipulation instructions
 - A built-in DRAM refresh address counter that would otherwise have to be provided by external circuitry
 - Single 5 Volt power supply
 - Fewer outboard support chips required for clock generation and interface to memory and I/O
 - A much lower price

-			1.0.0	
27	H1	- AØ	31	
19 22 21	MREO I ORO MR RD	A A A A	8488 8488	
28,	REFSH	A6 A7	畜	
	HALT	A8 A9 A18	39 48	
	MAIT	A11 A12	1	
16	INT NMI	A13 A14	3 4 5	
26	RESET	A15	14	
25	BUSRO BUSAK	DE 12/2	15 12 8	
6	ark	D4	7	
	Z8Ø	D5 D6 D7	18	

Embedded Low-Power

aboratory

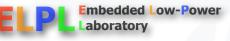
2010년 3월 5일 금요일

- Higher integration thanks to CMOS
- Embedded controllers
 - Peripherals are embedded
 - Dedicated peripherals disappeared
- Bus hierarchy
 - ESA bus
 - S-bus
- C programming
- Protection
 - User mode and supervisory mode
- 24MB addressing
 - Dynamic memory is used

2010년 3월 5일 금요일

Motorola 68000 (68K)

- Complete register architecture CISC
 - 8 general-purpose data registers (D0-D7)
 - 8 address registers (A0-A7)
 - A7 is the stack pointer
 - Arithmetic and logical operations are done by registers
 - Memory accesses are done by data move instructions between registers and memory
- 16 bit data and 32 bit addressing
 - No page or segment registers
- Orthogonal instruction set architecture


 - Almost all address modes are available for almost all instructions

- Motorola 68000 (68K)
 - Privilege levels
 - Two levels of privilege: user and supervisor modes
 - - 8 levels, strictly prioritized
 - Fully programmable exception table at fixed location permitting 256 vectors
 - ♀ CPU is getting faster than memory
 - No more accumulator architecture and zero page
 - Big-endian processor
 - Higher order bytes first
 - No backward compatibility with 8 bit 6800 series
 - ♀ Continue to 68020, 68030 and 68040 before PowerPC

Intel 8086

- Source code compatible with i8080
 - Segment register for 24 bit addressing
 - 16 bit general purpose registers
 - General of the second stress of the s
 - Poor hardware architecture but better chance for software
- Mathematical floating point coprocessor: i8087
- Major change occurred in i80286
- Continue to 80386, 80486 and Pentium

32 bit and 64 bit Microprocessors

- Distinct different between general purpose microprocessor and embedded processor
 - Operation speed
 - Memory hierarchy
 - Embedded peripherals
 - Bus hierarchy
 - Operating systems
 - Networking
 - Development environment

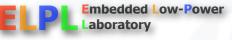
32 bit and 64 bit Microprocessors

- Many powerful processors
 - ☑ Intel 80386 and 80486
 - Motorola PowerPC

 - Intel XScale
 - MIPS RISC series
- This course covers ARM9 architecture with Motorola Dragonball

Current Embedded Processors

- Embedded processors rather than embedded controllers
 - Containing more general purpose peripherals
- Market division
 - Powerful 32 bit RISC cores
 - Low-cost small size RISC/CISC cores
 - Reconfigurable CPU cores
 - Soft-microprocessors
- Cache and high-speed main memory (266 DDR SDRAM)
- PCI or equivalent local bus expansion



Homework (due: One week later)

- Survey and summarize the following terms:
 - Accumulator architecture
 - Register architecture
 - Zero page
 - Addressing modes

 - Software interrupt
 - ☑ I/O mapped I/O vs. memory mapped I/O
 - Little and Big endians
 - Segment registers
 - Orthogonal instructions vs. implicit addressing
 - Register allocation

