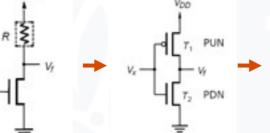
Embedded System Application 4190.303C 2010 Spring Semester

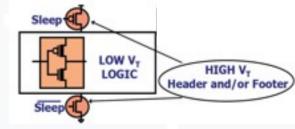
Memory Power Management

Naehyuck Chang Dept. of EECS/CSE Seoul National University naehyuck@snu.ac.kr

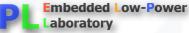
Outline

- Concept of high-level power management
- SRAM power management
- SDRAM power states
- SDRAM mode control
- High-level memory power management

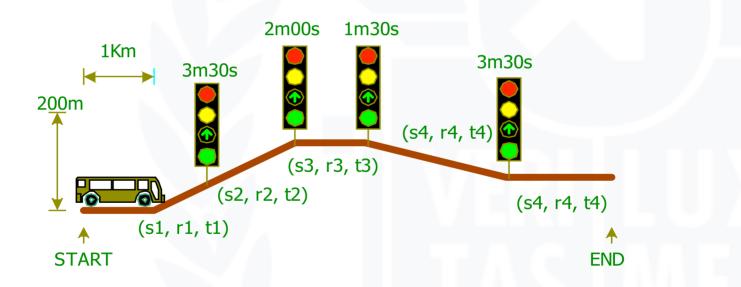



- Low-level energy optimization
 - Has been contributing over dozens of years
 - Enhancement of devices and components
 - General solution that applicable to almost all kinds of use
 - Gity bus service example
 - Objective: more gas mileage
 - New buses, engine swap, aluminum bodies, new transmissions, etc.
 - In the semiconductor world

 - MTCMOS


Gas-efficient engine

light-weight bus Light-weight bus

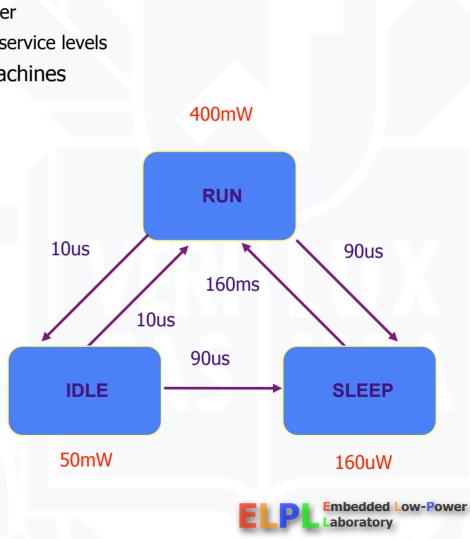


System-software-level energy optimization 0

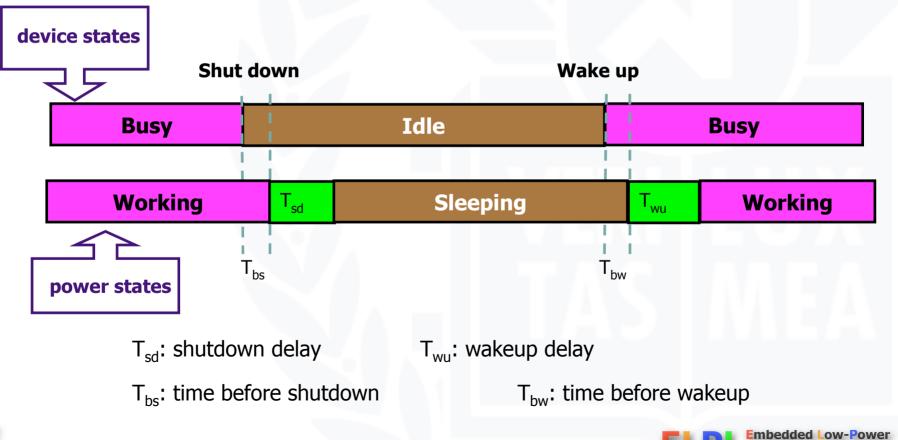
- City bus service example 9
 - Optimal speed, engine rpm, shift position scheduling w/original hardware 9
 - Analysis of a target route
 - 9 Use of component characteristics

System-level approaches give us bigger chance to minimize energy consumption!

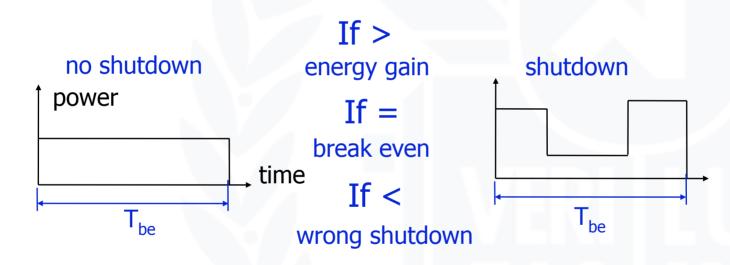
- Level of abstraction: engine idle gas consumption
 - Model 1: linear gas consumption per speed: g = mv
 - Model 2: counting idle gas consumption when v=0:
 - g = mv + I
 - Model 3: counting engine restarting cost


- Applicable gas saving techniques when a vehicle is temporarily parked
 - **Technique 1**: linear gas consumption model
 - No policy when a vehicle is stopping
 - **Technique 2:** Idle gas consumption
 - Stop engine whenever a vehicle is stopped
 - Technique 3: Restarting cost
 - Stop engine when stopping time is more than 2 minutes for instance

Proper energy characterization is a primary concern of quality high-level power saving approach

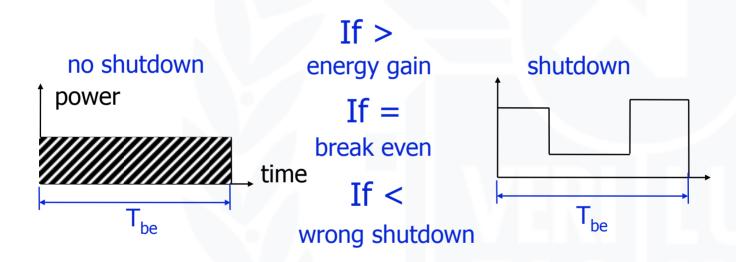


- Components with multiple internal states
 - Each state has different functionality
 - Each state consumes different amount of power
 - Generally power consumption corresponds to service levels
- Conventionally abstracted as power state machines
 - State diagram with
 - Power and service annotation on states
 - Power and delay annotation on edges


- Dynamic power management (DPM)
 - Reduce power according to workloads
 - Shutdown only during long idle time

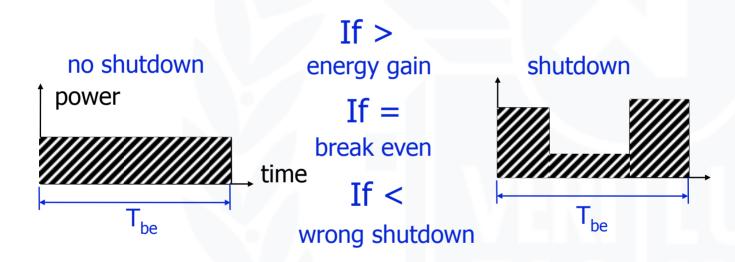
aboratory

- Challenge
 - Predicting the future
- Break even time: Tbe
 - Shortest idle period for energy saving



Idle period shorter than T_{be} is useless for energy saving

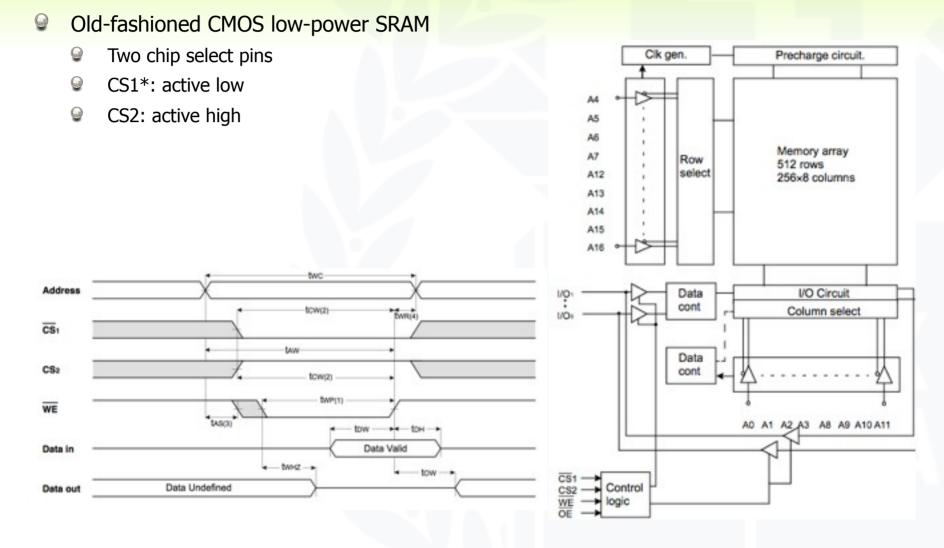
- Challenge
 - Predicting the future
- Break even time: Tbe
 - Shortest idle period for energy saving



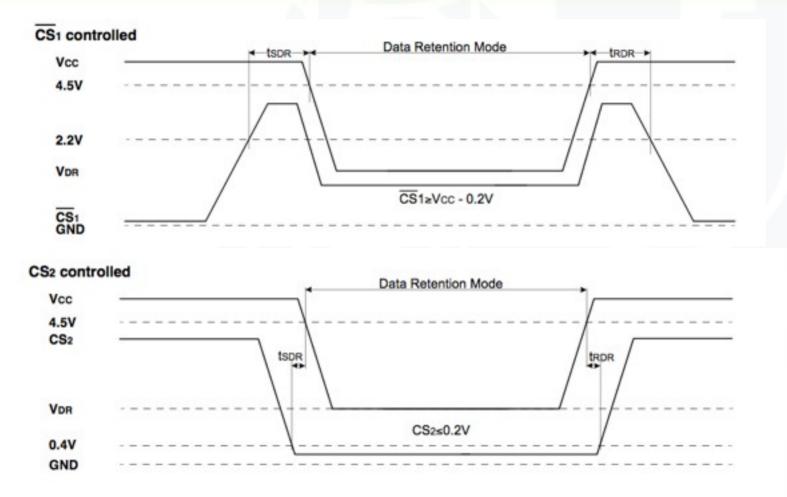
Idle period shorter than T_{be} is useless for energy saving

- Challenge
 - Predicting the future
- Break even time: Tbe
 - Shortest idle period for energy saving

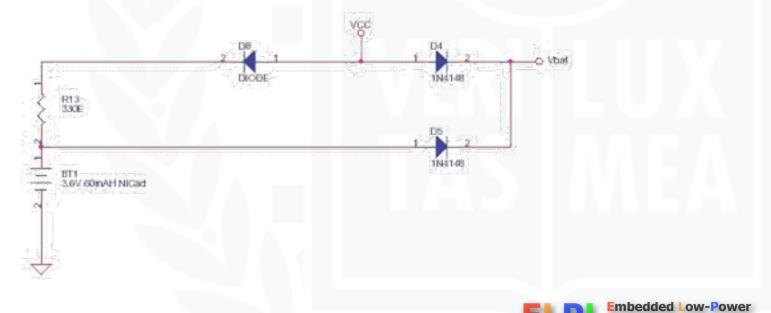
Idle period shorter than T_{be} is useless for energy saving



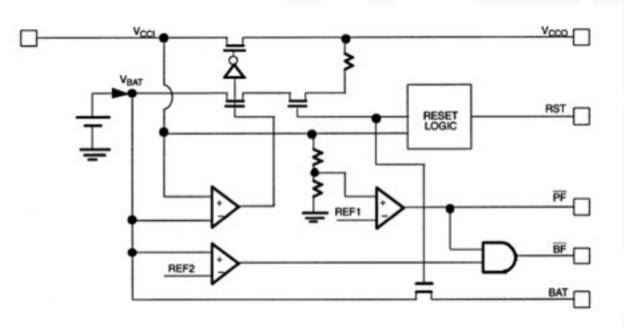
- When to use power management?
 - When T_{BE} < T^{avg}
 idle
 idle
 - Average idle periods are long enough
 - Transition delay is short enough
 - Transition power is low enough
 - Sleep power is low enough
 - When designing system for a known workload
 - ♀ Criteria for component specification and design


- Low-power mode
 - Very low data retention current
 - Disable chip select and lower VDD
 - Recovery overhead exits

Item	Symbol	Test Condit	on	Min	Тур	Max	Unit
Vcc for data retention	VDR	CS11)aVcc-0.2V		2.0	2.0 -		V
Data retention current			KM681000BL KM681000BL-L	:	1 0.5	50 10	
	IDR	Vcc=3.0V CS1≥Vcc-0.2V, CS2≥Vcc-0.2V or CS2≤0.2V Other Input+0~Vcc	KM681000BLE KM681000BLE-L	:	:	50 25	μΑ
			KM681000BLI KM681000BLI-L	:	:	50 25	
Data retention set-up time	tRDR	See data retention waveform		0	-		ms
Recovery time				5	-	-	1113


How do send the SRAM to the data retention mode

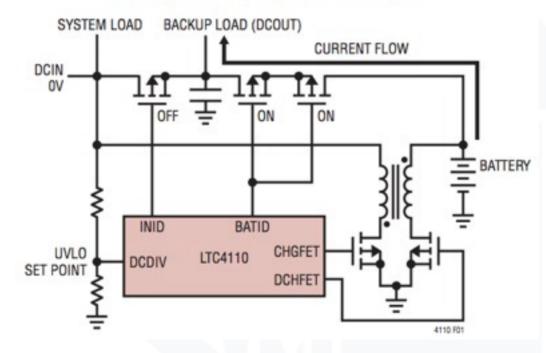
- Battery backup
 - No true non-volatile, high-performance memory device exists
 - Non-volatile
 - Balanced read and write performance
 - Battery backed SRAM in an alternative solution
- Low-cost battery backup circuit
 - No battery charging sequence
 - Diode loss
 - SRAM operating VDD is lower than other device VDD



aboratory

- Non-rechargeable battery
 - Lithium battery

 - Very low data retention current
 - Dallas Semiconductor DS1259



- Rechargeable battery
 - Precision battery charge sequence
 - No diode loss

Battery Backup System Manager

SDRAM power calculation

Power Calculation

Total Power = Core Power + I/O Power (IDD4 x VDD) + (C x f/2 x VDDQ² x number of I/Os /2)

Mobile SDRAM P = (90mA x 2.5V) + (10pf x $\frac{100 \text{ MHz}}{2}$ x 1.8V² x 16 /2) P = 238mW

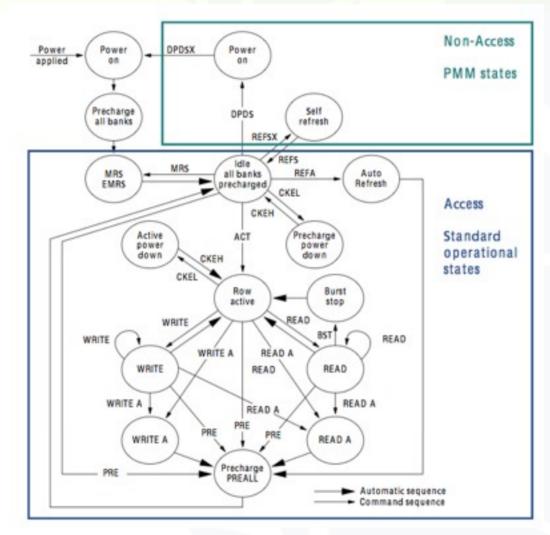
Standard SDRAM P = (150mA x 3.3V) + (10pf x $100 \text{ MHz} \times 3.3\text{V}^2 \times 16 / 2)$ 2 P = 538mW

Power supply current (IDD) specification by the power states

PARAMETER/CONDITION		SYMBOL	SDR ^{1,3} (MAX)	128Mb Mobile SDRAM ^{2,4} (MAX)	UNITS
Operating Current: Active Mode; Burst = 2; READ or WRITE; ^t RC = ^t RC CAS latency = 3	IDD1	120	150	mA	
Standby Current: Power-Down Mod CKE = LOW; All banks idle	IDD2	2	0.350 n		
Standby Current: Active Mode; CS# CKE = HIGH; All banks active after ^t No accesses in progress		IDD3	50	35	mA
Operating Current: Burst Mode; Co READ or WRITE; All banks active, C/		IDD4	150	90	mA
Auto Refresh Current: CAS latency = 3; CKE, CS# = HIGH	^t RFC = ^t RFC (MIN)	IDD5	310	210	mA
Self Refresh Current: CKE 0.2V	IDD7	2	0.100 to 0.355	mA	

IDD Specifications and Conditions

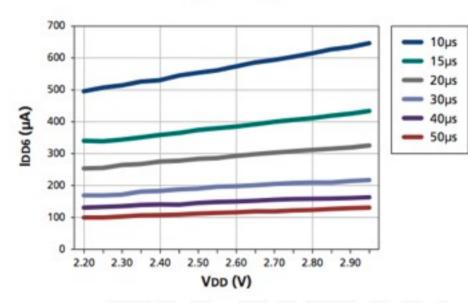
NOTE: 1. Part Number MT48LC8M16A2TG-75@ 3.3V


- 2. Part Number MT48V8M16LFFC-8@2.5V
- VDD, VDDQ = +3.3V for x16 SDRAM

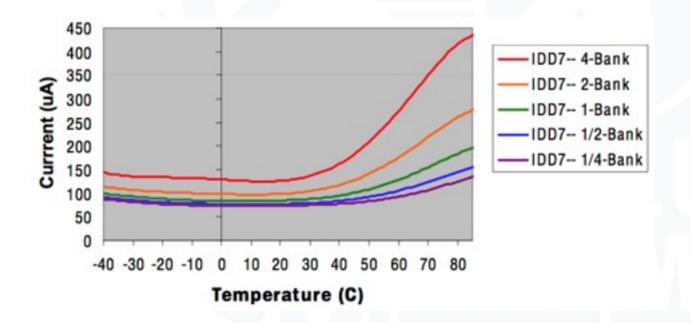
4. VDD = +2.5V, VDDQ = 2.5V/1.8V

5. Using TCSR from 15°C to 70°C

Detailed power states



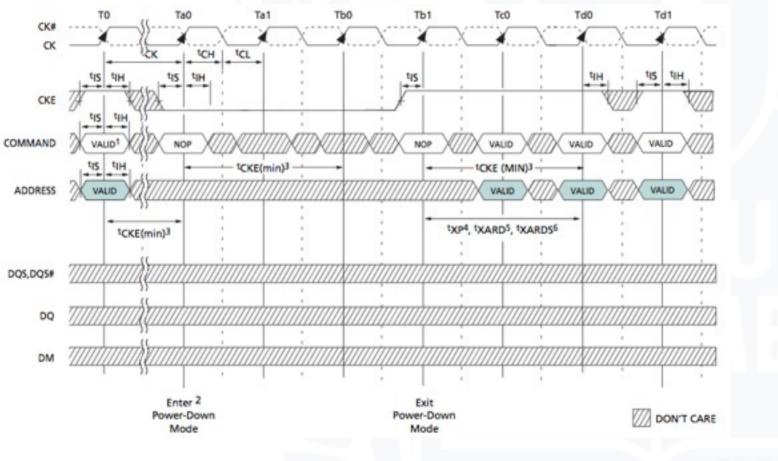
- ✓ Low-level power management
 - The amount of current consumed is directly proportional to the self refresh rate



- Temperature compensated self refresh (TCSR)
 - In self refresh operation, power can be saved if the internal self refresh intervals can be adjusted for the ambient temperature

 - Increased temperatures cause SDRAM cells to lose a charge at a faster rate

- Partial array self refresh (PASR)
 - In self refresh operation, the refresh operation can be limited to the portion of the memory's array where data will be stored
- Deep power-down (DPD)
 - In some applications, actual data retention in the DRAM is not required most of the time
 - DRAM can incorporate DPD to turn off most or all of the on-board array voltage generators
- How are they effective?


Typical Use Profile

Operation	Duty Cycle (Percentage of Clock Cycle)
Power Management Modes	
Deep Power-Down (DPD)	50%
Self Refresh (PASR)	30%
Standard SDRAM Modes	20%

- SDRAM power down
 - In DDR2 SDRAM devices, power-down occurs when CKE is registered LOW with a DESELECT or NOP command

Precharge power down

If this command is a PRECHARGE (or if the device is already in the idle state)

Precharge power-down current: All banks idle; 'CK = 'CK (I _{DD}); CKE is LOW; Other control and ad- dress bus inputs are stable; Data bus inputs are float- ing	I _{DD2P}	x4, x8, x16	5	5	5	mA
Precharge quiet standby current: All banks idle;	I _{DD2Q}	x4, x8	40	35	25	mA
¹ CK = ¹ CK (I _{DD}); CKE is HIGH, CS# is HIGH; Other con- trol and address bus inputs are stable; Data bus in- puts are floating		x16	50	35	25	

Active power down

If this command is an ACTIVE (or if at least one row is already active)

Active power-down current: All banks open; ¹ CK = ¹ CK (I _{DD}); CKE is LOW; Other control and ad-	I _{DD3Pf}	Fast PDN exit MR12 = 0	30	25	20	mA
dress bus inputs are stable; Data bus inputs are float-	I _{DD3Ps}	Slow PDN exit MR12 = 1	6	6	6	
Active standby current: All banks open;	I _{DD3N}	x4, x8	50	40	30	mA
^t CK= ^t CK (I _{DD}), ^t RAS = ^t RAS MAX (I _{DD}), ^t RP = ^t RP (I _{DD}); CKE is HIGH, CS# is HIGH between valid commands; Other control and address bus inputs are switching; Data bus inputs are switching		x16	55	40	30	

- General Fast exit
- Slow exit

	AC Characterist		tics	-18	7E	-25	5E	-2	5	-31	E	-3	i	-37	Æ	-5	E		
	Paramet	ter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units	Notes
	Exit active power-	MR12 = 0	^t XARD	3	-	2	~	2	-	2	-	2		2	-	2	-	¹ CK	18
13	down to READ command	MR12 = 1		10 - AL	-	8 - AL	-	8 - AL	-	7 - AL	-	7 - AL	-	6 - AL	-	6 - AL	-	¹ CK	18
we	Exit prechar power-dow nonREAD command		^t XP	3	-	2	17	2	-	2	-	2	-	2	-	2	-	чСК	18
	CKE MIN HI LOW time	GH/	'CKE							MIN =						_		¹ CK	18, 44

Active power-down current: All banks open; ^t CK = ^t CK (I _{DD}); CKE is LOW; Other control and ad-	I _{DD3Pf}	Fast PDN exit MR12 = 0	30	25	20	mA
dress bus inputs are stable; Data bus inputs are float- ing	I _{DD3Ps}	Slow PDN exit MR12 = 1	6	6	6	

BA1

Implementation

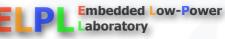
Extended Mode Register

BA0	A12	A11	A10	A9	A8	A	7 A	5 A	5	A 4	A3	A2	A1	A	
0	Reserved									TC	SR ¹	F	PASR ²		
								-	-				Т		
	A4	A3	N	Aax.	Cas	e Te	emp.								
	0	0			70	'C									
	0	1			45	C									
	1	0		15°C 85°C											
	1	1	<u> </u>												
													1		
				4	12	A1	A0	Self	FR	efre	sh C	over	age		
					0	A1 0	A0 0	Ali	B	anks					
								Ali	B	anks		over (BA		0)	
				E	0	0		All Bar Bar	Bi nk	anks s 0 a 0 (B	nd 1		1 = 1		
				E	0	0 0 1	0 1 0 1	All Bar Bar Res	Bi nk nk	anks s 0 a 0 (B ved	nd 1	(BA	1 = 1		
				E	0	0 1 1 0	0	All Bar Bar Res Res	Bi nk nk	anks s 0 a 0 (B ved ved	nd 1 A1 =	(BA	1 = 0 0 = 0		
				E	0	0 0 1	0 1 0 1 0 1 0 1	All Bar Res Res Lov	Bi nk hk	anks s 0 a 0 (B ved ved r Ha	nd 1 A1 =	(BA BA)	1 = 0 0 = 0))	
				E	0	0 1 1 0	0 1 0 1	All Bar Res Lov Lov	Bi nk ier ier we	anks s 0 a 0 (B ved ved r Ha	nd 1 A1 =	(BA	1 = 0 0 = 0))	

- NOTE: 1. Temperature Compensated Self Refresh
 - 2. Partial Array Self Refresh
 - 3. Row Address 2 MSB = 0
 - 4. Row Address MSB = 0
 - 5. Available on future devices. Contact factory.

High-Level Memory Power Management

- SDRAM power down is effective power management
 - As far as power down decision making is appropriate
 - Break-even time should be carefully considered
 - Misprediction results in negative energy gain
- ♀ Other approaches for high-level memory system power management
 - Bus encoding
 - SDRAM mode control



Commercial Data Sheets

Power values are described for a particular operating condition

Paramete	r/Condition	Symbol	Configuration	-3	-37E	-5E	Units	
perating	one bank active-precharge current:	I _{DD0}	x4, x8	90	80	75	mA	1
CK = ^t CK (I _{DD}), ^t RC = ^t RC (I _{DD}), ^t RAS = ^t RAS MIN (I _{DD}); CKE is HIGH, CS# is HIGH between valid commands; Address bus inputs are switching; Data bus inputs are switching			x16	90	80	75		
perating	g one bank active-read-precharge	I _{DD1}	x4, x8	100	90	85	mA	1
^t CK = ^t CK (^t RCD = ^t RC valid comm	$D_{DUT} = 0mA$; $BL = 4$, $CL = CL (I_{DD})$, $AL = 0$; I_{DD}), ${}^{t}RC = {}^{t}RC (I_{DD})$, ${}^{t}RAS = {}^{t}RAS MIN (I_{DD})$, $D (I_{DD})$; CKE is HIGH, CS# is HIGH between mands; Address bus inputs are switching; ern is same as I_{DD4W}	-001	x16	100	90	85		
recharge	power-down current: All banks idle;	I _{DD2P}	x4, x8, x16	5	5	5	mA	1
	I _{DD} Parameters		-3	-37E		-5E		Units
ng	CL (I _{DD})		5	4		3		⁴ CK
recharg	tRCD (IDD)		15	15		15		ns
$CK = {}^{t}CK$ rol and a	^t RC (I _{DD})		60	60		55		ns
or and a	^t RRD (I _{DD}) - x4/x8 (1KB)		7.5	7.5		7.5		ns
	^t RRD (I _{DD}) - x16 (2KB)		10	10		10		ns
	^t CK (l _{DD})		3	3.75		5		ns

Micron Power Calculator

- Three steps
 - Power subcomponents are calculated based on data sheet specifications
 - Power is derated based on the command scheduling in the system
 - Power is derated to the system's actual operating VDD and clock frequency
- Power derating
 - Power calculations have assumed a system operating at worst-case VDD (Psch)
 - Clock frequency in the system is the same as the frequency defined in the data sheet (Psys)
 - However, most systems operate at different clock frequencies or operating voltages than the ones defined in the data sheet
- VDD derating

$$Psys(XXX) = Psch(XXX) \times (\frac{use VDD}{Max spec VDD})^2$$

Clock frequency derating

$$Psys(XXX) = Psch(XXX) \times \frac{use_freq}{spec_freq}$$

Micron Power Calculator

Some parameters are frequency dependent while others are not

$$Psys(PRE_PDN) = Psch(PRE_PDN) \times \left[\frac{use \ VDD}{Max \ spec \ VDD}\right]^{2}$$

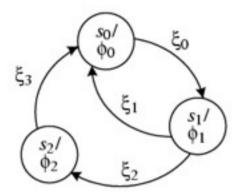
$$Psys(ACT_PDN) = Psch(ACT_PDN) \times \left[\frac{use \ VDD}{Max \ spec \ VDD}\right]^{2}$$

$$Psys(PRE_STBY) = Psch(PRE_STBY) \left[\frac{use \ freq}{spec_freq}\right] \times \left[\frac{use \ VDD}{Max \ spec \ VDD}\right]^{2}$$

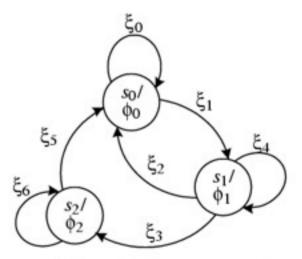
$$Psys(ACT_STBY) = Psch(ACT_STBY) \left[\frac{use \ freq}{spec_freq}\right] \times \left[\frac{use \ VDD}{Max \ spec \ VDD}\right]^{2}$$

$$Psys(ACT) = Psch(ACT) \times \left[\frac{use \ VDD}{Max \ spec \ VDD}\right]^{2}$$

$$Psys(WR) = Psch(WR) \times \left[\frac{use \ freq}{spec_freq}\right] \times \left[\frac{use \ VDD}{Max \ spec \ VDD}\right]^{2}$$

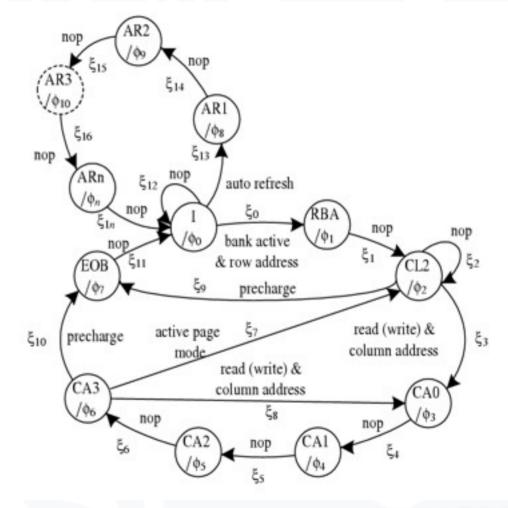

$$Psys(RD) = Psch(WRRD) \times \left[\frac{use \ freq}{spec_freq}\right] \times \left[\frac{use \ VDD}{Max \ spec \ VDD}\right]^{2}$$

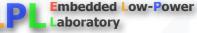
$$Psys(REF) = Psch(REF) \times \left[\frac{use \ VDD}{Max \ spec \ VDD}\right]^{2}$$



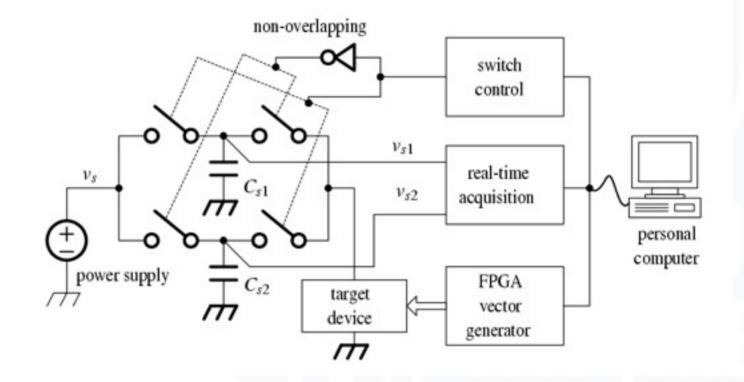
- Energy state machine
 - Energy state machine is a finite state machine
 - States denote static power consumption
 - Transitions denote dynamic power consumption

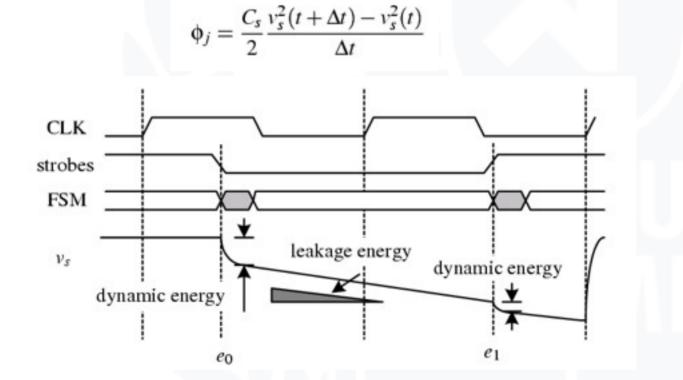
(a) asynchronous energy state machine


(b) synchronous energy state machine

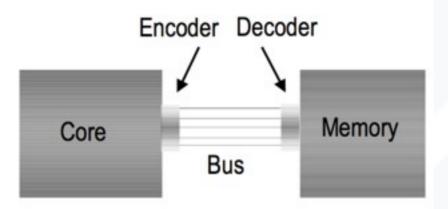


Energy state machine (Memory device)


- SRAM
- DRAM
- SDRAM
- NAND Flash
- etc.


Annotation of energy state machine (Event-accurate energy measurement)

- Annotation of energy state machine (Leakage energy consumption triggered by an asynchronous strobe signal)
 - Leakage energy consumption is denoted by

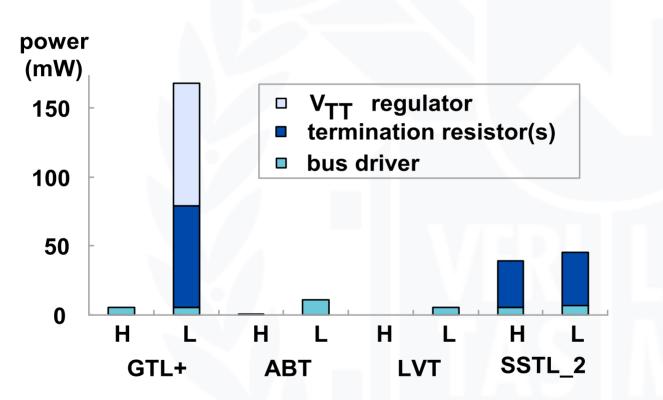


Memory Bus Encoding

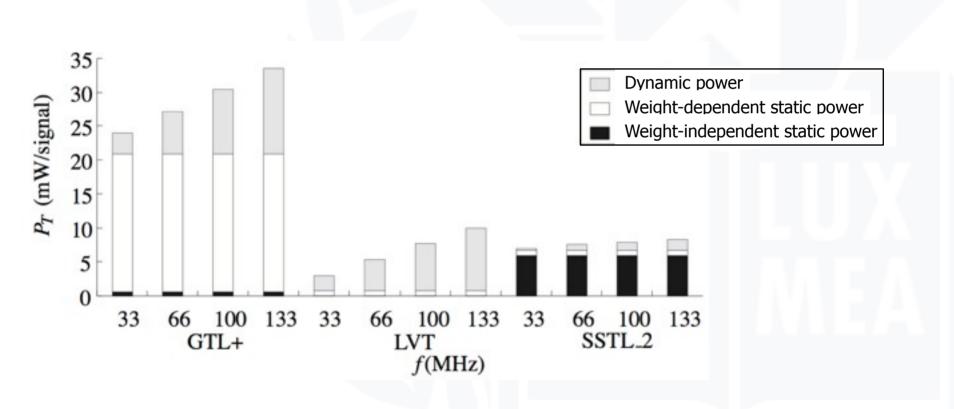
Bus encoding concept

Bus power cost

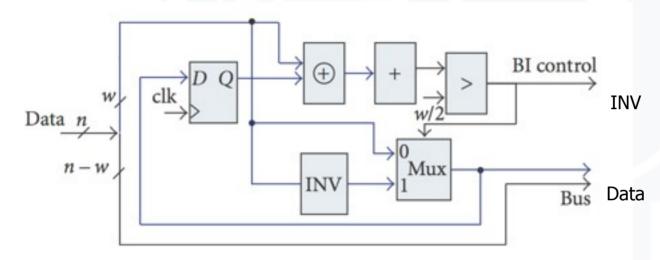
- Power cost
 - HDD: Hamming distance dependent power
 - WDS: Weight dependent static power
- HDD
 - Due to the switching capacitance of the load and PCB track
- - Due to the static power of the bus driver and termination resistors


- Clock frequencies of processor and memory system doesn't affect the number of transactions
- Secution time decreases as clock frequency increases

Addr	ess bus	Data bus		
IDD	WDS	HDD	WDS	
7/4.46	11.79/41.36	4.13/14.48	1.05/3.67	
7/5.71	9.20/41.32	4.13/18.54	1.05/4.70	
7/7.97	6.58/41.24	4.13/25.86	1.05/6.55	
7/9.90	5.29/41.17	4.13/32.13	1.05/8.14	
/13.06	4.00/41.04	4.13/42.37	1.05/10.74	
/19.03	2.73/40.78	4.13/61.73	1.05/15.64	
KB/4wo	rd/2-way-set-as	ssociative cach	e	
7/7.75	6.72/40.94	4.13/25.16	2.09/12.75	
7/9.90	5.29/41.17	4.13/32.13	1.05/8.14	
/10.50	5.00/41.23	4.13/34.05	0.84/6.90	
/10.68	4.92/41.31	4.13/34.63	0.70/5.85	
/11.22	4.69/41.35	4.13/36.41	0.52/4.61	
/1	1.22	1.22 4.69/41.35		


Static power consumption

Power consumption coefficients

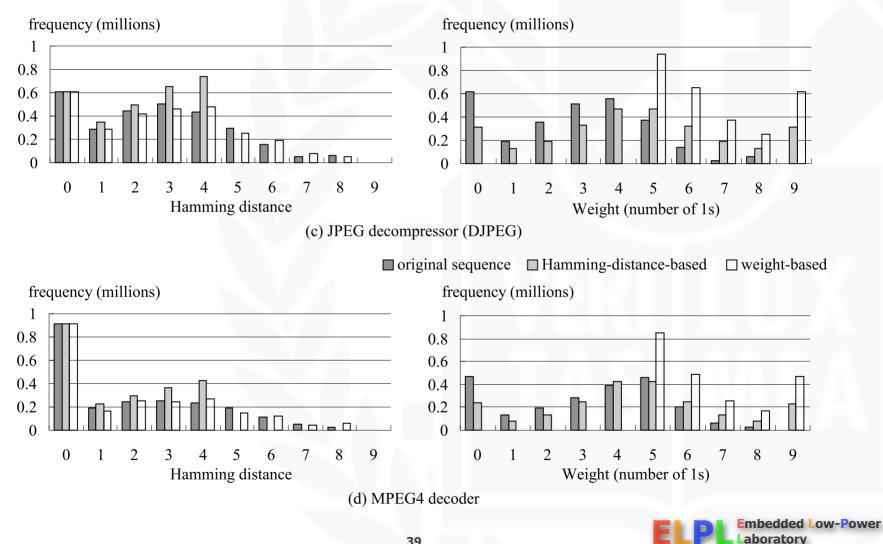


37

Embedded Low-Power

aboratory

- Bus invert coding
 - Original bus signal + INV signal
 - If the next bus power cost is high, invert the bus data and enable INV signal


- Example
 - \bigcirc 00000000, 11111111 → 00000000 (0), 00000000 (1)
- Inversion decision is the key
 - ♀ HDD based, WDS based, or both

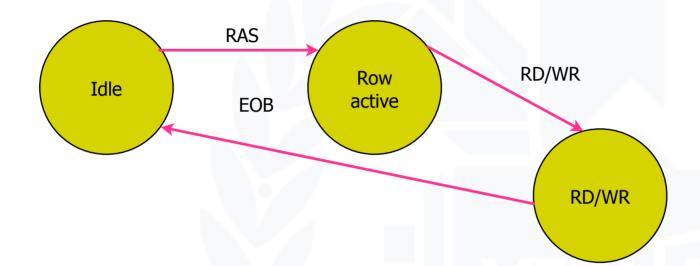
HDD and WDS based inversion decision contract with each other 0

- In the view of energy consumption of the data bus

 - Hamming-distance-based bus-invert coding scheme is superior for JPEG compressor, JPEG decompressor and MPEG4 decoder

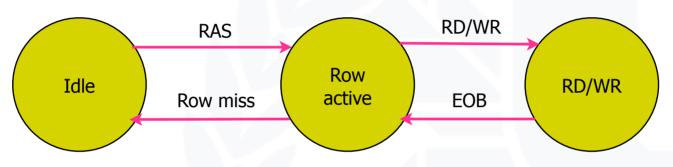
Application	Decision scheme	HDD	WDS	Total	Reduction ratio (%)
MP3	no encoding	0.18	0.40	0.58	0.0
	H-based	0.13	0.20	0.33	43.9
	W-based	0.16	0.02	0.18	69.9
CJPEG	no encoding	4.13	1.05	5.18	0.0
	H-based	3.37	1.01	4.38	15.4
	W-based	4.28	0.57	4.85	6.4
DJPEG	no encoding	4.15	1.17	5.32	0.0
	H-based	3.37	1.02	4.39	17.5
	W-based	4.25	0.53	4.78	10.0
MPEG4	no encoding	2.50	0.85	3.35	0.0
	H-based	1.95	0.80	2.75	17.8
	W-based	2.58	0.44	3.02	9.9

Energy Reduction Practices


Larger cache block size increases the HDD energy of the data bus, but decreases the HDD energy of the address bus

	2000	Addro	ess bus	Data	bus
Paramo	Parameter HDI		WDS	HDD	WDS
	1	5.78/22.44	10.09/39.18	16.44/63.83	4.48/17.40
Cache	2	4.63/20.55	8.82/39.20	13.70/60.84	3.41/15.13
size	4	3.91/19.01	8.05/39.15	12.14/59.05	2.73/13.29
KB	8	1.27/9.90	5.29/41.17	4.13/32.13	1.05/8.14
	16	0.62/5.59	4.65/42.03	2.17/19.61	0.53/4.79
f _M @	66MI	Hz, f _P @266N	Hz, 4word/2-	way-set-associa	ative cache
	1	1.30/10.04	5.31/41.15	4.11/31.86	1.14/8.86
Cache	2	1.27/9.90	5.29/41.17	4.13/32.13	1.05/8.14
set	4	1.36/10.36	5.40/41.13	4.45/33.90	1.09/8.27
	8	1.47/10.87	5.60/41.46	4.81/35.63	1.15/8.52
	fм	@66MHz, f_F	@266MHz, 8	KB/4word cacl	he
Dlask	4	1.27/9.90	5.29/41.17	4.13/32.13	1.05/8.14
Block		the second se		5.15/42.79	1.48/12.28

Auto-precharge


After a burst-mode access, the controller closes the row, and the SDRAM remains in the idle mode

Active page

- The SDRAM may also remain in the row-active state after a burst mode access
- If the row address of the next access is equal to the current one (row hit), the controller does not need to re-issue the row address, and thus data can be directly forwarded to the sense amplifier
- If the next access refers the different row address (row miss) while the SDRAM remains in the rowactive mode expecting the next access will hit the same row, the controller need to close the row and re-open a new row

- Auto-precharge policy for a mid-performance system
 - General CL: common-mode leakage power
 - GD: common-mode dynamic power

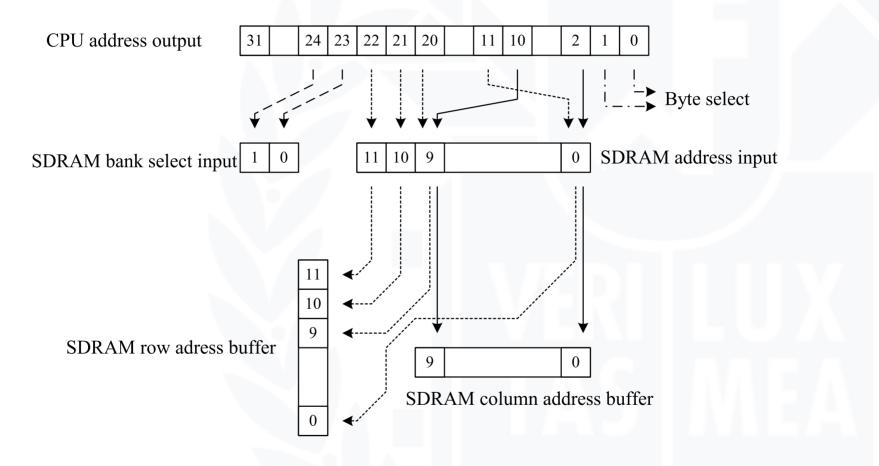
	CL	CD	WDD	Total
100	19.0/66.6	65.8/230.8	2.3/8.1	87.1/305.5
133	15.3/68.9	63.5/285.2	2.3/10.4	81.2/364.4
200	11.7/73.0	61.2/383.1	2.3/14.5	75.1/470.6
266	9.8/76.5	60.0/467.1	2.3/18.0	72.2/561.6
400	8.0/82.3	58.9/604.3	2.3/23.7	69.2/710.3
800	6.2/93.2	57.8/863.6	2.3/34.5	66.3/991.3
@66M	Hz, 8KB/4wo	ord/2-way-set-a	issociative ca	che
33	14.2/86.8	61.1/372.3	2.3/14.1	77.7/473.2
66	9.8/76.5	60.0/467.1	2.3/18.0	72.2/561.6
83	8.9/73.8	59.8/493.3	2.3/19.0	71.1/586.1
100	8.8/73.7	59.7/501.1	2.3/19.4	70.8/594.2
133	8.0/70.5	59.6/525.4	2.3/20.4	69.9/616.2
	100 133 200 266 400 800 @66M 33 66 83	100 19.0/66.6 133 15.3/68.9 200 11.7/73.0 266 9.8/76.5 400 8.0/82.3 800 6.2/93.2 @66MHz, 8KB/4we 33 14.2/86.8 66 9.8/76.5 83 8.9/73.8	100 19.0/66.6 65.8/230.8 133 15.3/68.9 63.5/285.2 200 11.7/73.0 61.2/383.1 266 9.8/76.5 60.0/467.1 400 8.0/82.3 58.9/604.3 800 6.2/93.2 57.8/863.6 @66MHz, 8KB/4word/2-way-set-a 33 14.2/86.8 61.1/372.3 66 9.8/76.5 60.0/467.1 83 8.9/73.8 59.8/493.3	100 19.0/66.6 65.8/230.8 2.3/8.1 133 15.3/68.9 63.5/285.2 2.3/10.4 200 11.7/73.0 61.2/383.1 2.3/14.5 266 9.8/76.5 60.0/467.1 2.3/18.0 400 8.0/82.3 58.9/604.3 2.3/23.7 800 6.2/93.2 57.8/863.6 2.3/34.5 @66MHz, 8KB/4word/2-way-set-associative ca 33 14.2/86.8 61.1/372.3 2.3/14.1 66 9.8/76.5 60.0/467.1 2.3/18.0 83 8.9/73.8 59.8/493.3 2.3/14.0

- Auto-precharge policy for a mid-performance system
 - GL: common-mode leakage power
 - CD: common-mode dynamic power

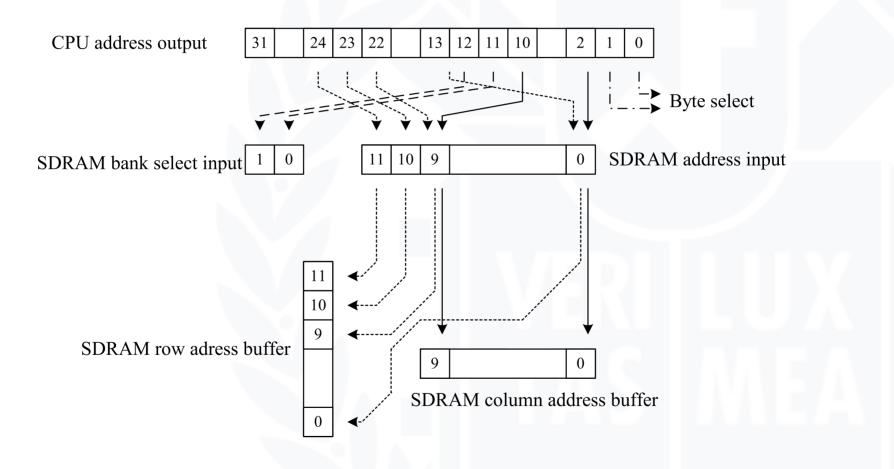
Paramete	er	CL	CD	WDD	Total
	1	24.7/96.1	275.8/1070.9	10.8/41.8	311.3/1208.7
Cache	2	20.9/93.0	222.9/990.0	9.0/40.1	252.9/1123.1
size	4	18.6/90.6	191.4/930.7	8.0/39.0	218.1/1060.4
KB	8	9.8/76.5	60.0/467.1	2.3/18.0	72.2/561.6
	16	7.6/69.1	30.0/270.9	1.1/9.8	38.7/349.8
f _M @60	6MHz, j	f _P @266MH	z, 4word/2-way-	set-associati	ve cache
	1	9.9/77.0	60.6/469.7	2.2/17.2	72.8/563.9
					1210120215
Cache	2	9.8/76.5	60.0/467.1	2.3/18.0	72.2/561.6
Cache set	-	9.8/76.5 10.1/77.2	60.0/467.1 64.9/494.3	2.3/18.0 2.5/19.3	
5.0100	2				72.2/561.6
Cache set	2 4 8	10.1/77.2 10.5/78.1	64.9/494.3	2.5/19.3 2.8/20.8	72.2/561.6 77.6/590.8 84.2/623.4
50000	2 4 8	10.1/77.2 10.5/78.1	64.9/494.3 70.8/524.5	2.5/19.3 2.8/20.8	72.2/561.6 77.6/590.8 84.2/623.4

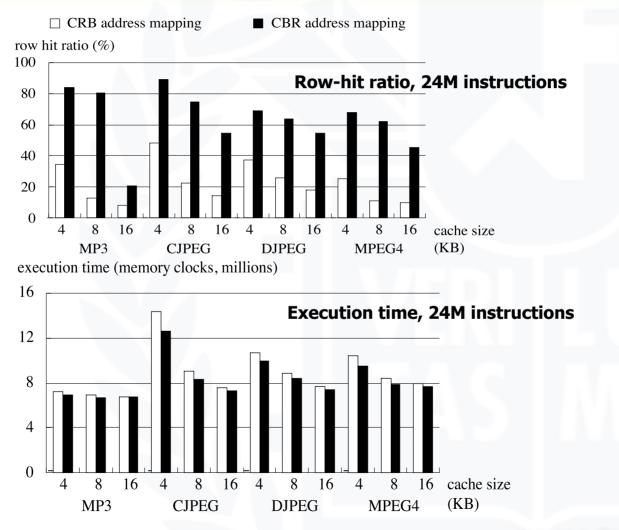
- Auto-precharge policy for a high-performance system
 - GL: common-mode leakage power
 - CD: common-mode dynamic power

Parame	ter	CL	CD	WDD	Total
	133	27.0/133.6	25.7/126.9	1.1/5.2	55.1/272.5
Processor	200	19.6/140.6	26.4/182.8	1.0/7.5	47.1/337.6
$\operatorname{clock}(f_P)$	266	15.7/145.5	26.1/236.2	1.0/9.7	42.8/398.1
MHz	400	11.7/153.6	25.8/331.7	1.0/13.7	38.6/505.6
	800	7.3/163.3	25.5/560.9	1.0/23.2	33.9/753.7
	1000	6.4/165.8	25.4/651.0	1.0/26.9	32.9/850.0
fм	@100N	4Hz, 16KB/4w	vord/2-way-set-	associative of	ache
	33	15.3/155.6	26.0/258.4	1.0/10.6	42.3/430.9
Memory	66	12.5/155.1	25.8/315.1	1.0/13.0	39.3/489.6
$\operatorname{clock}(f_M)$	83	11.8/154.2	25.8/330.2	1.0/13.6	38.7/504.6
MHz	100	11.7/153.6	25.8/331.7	1.0/13.7	38.6/505.6
MHz				1.0/14.3	38.0/521.0

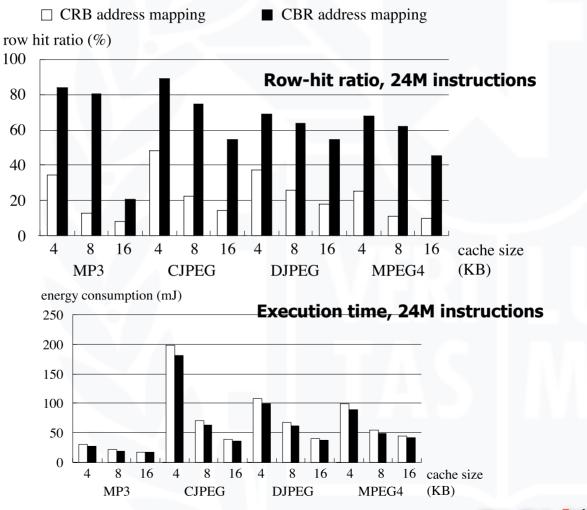

- Auto-precharge policy for a high-performance system
 - General CL: common-mode leakage power
 - GD: common-mode dynamic power

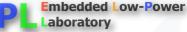
Parame	eter	CL	CD	WDD	Total	
Cache	1	31.0/172.2	240.9/1332.2	9.7/54.0	281.6/1564.9	
size	2	26.9/172.1	194.0/1233.3	8.1/52.0	229.1/1464.0	
KB	4	24.4/170.3	166.9/1158.3	7.3/50.7	198.6/1385.8	
	8	14.9/164.9	53.5/585.9	2.2/24.2	70.6/781.5	
	16	11.7/153.6	25.8/331.7	1.0/13.7	38.6/505.6	
$f_M @ 1$	00MHz	, f _P @400MH	z, 4word/2-way-	-set-associa	tive cache	
	-	1				
Cache	1	12.7/163.9	28.3/358.6	1.1/14.5	42.1/543.5	
Cache set	1 2	12.7/163.9 11.7/153.6	28.3/358.6 25.8/331.7	1.1/14.5 1.0/13.7	42.1/543.5 38.6/505.6	
	2	11.7/153.6	25.8/331.7	1.0/13.7	38.6/505.6	
	2 4 8	11.7/153.6 11.3/149.5 11.1/147.2	25.8/331.7 25.2/325.0	1.0/13.7 1.0/13.4 1.0/13.0	38.6/505.6 37.5/494.5 36.0/478.6	
	2 4 8	11.7/153.6 11.3/149.5 11.1/147.2	25.8/331.7 25.2/325.0 24.0/311.8	1.0/13.7 1.0/13.4 1.0/13.0	38.6/505.6 37.5/494.5 36.0/478.6	


Conventional CRB (Column, Row, Bank) address alignment



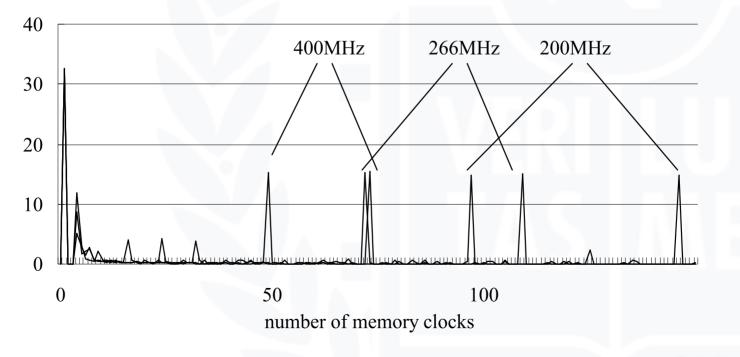
GBR (Column, Bank, Row) address alignment for higher row-hit ratio


High performance configuration **row-hit ratio** versus **execution time**

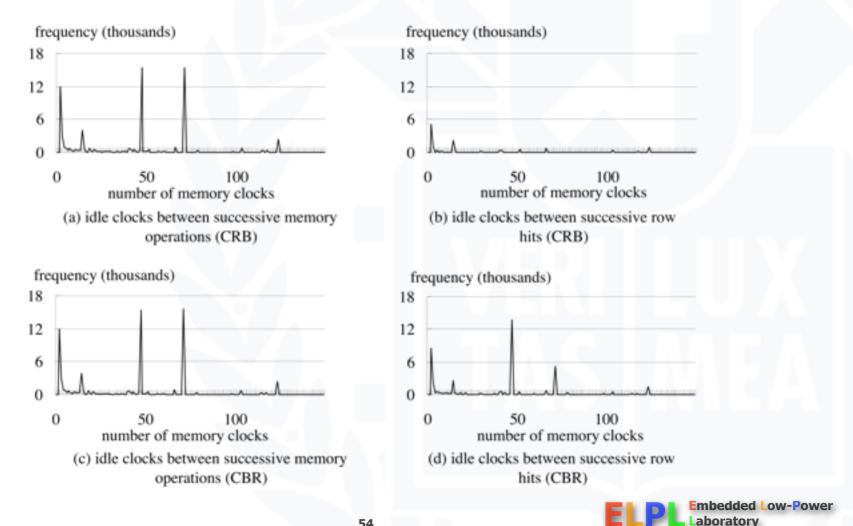


High performance configuration **row-hit** ratio versus **energy consumption**

SDRAM mode control


- With elaborated bus encoding scheme, we reduce only around 1% out of total energy of SDRAM devices
 - HDD energy is not observed in SDRAM devices
 - Actual portion of WDD energy is very small
- SDRAM mode control schemes are introduced
 - Forcing SDRAM devices to active (high energy state) or idle mode (low energy state)
 - Shutting down SDRAM devices
- The first mode control scheme requires correct estimation of row hit behavior
- The second mode control scheme requires proper **break-even** time for shutting down the devices

- High-performance configuration idle clocks between successive memory operations
 - Cache hit ratio determines the vertical scale of the spectrum
 - The processor clock frequency determines the horizontal scale
 - As cache-hit ratio increases, new spectrums appear at the right side of the graph

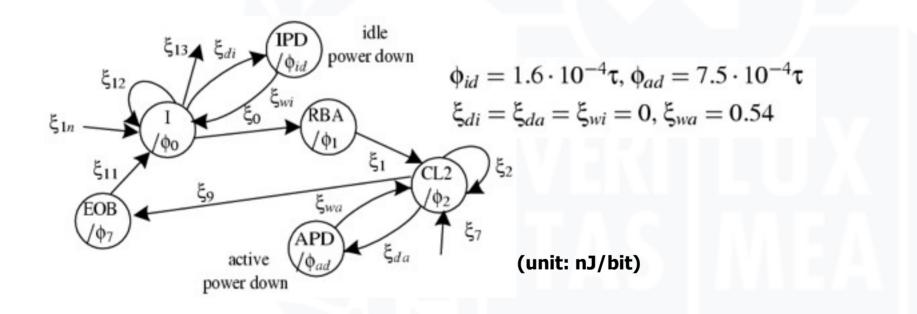

frequency (thousands)

mbedded Low-Power

aboratorv

High-performance configuration idle clocks between successive memory operations or 0 successive row hits with CRB and CBR




- Commercial SDRAM controllers commonly set up the time-out value for the delayed precharge by 256 clock steps or do not have a capability to set up the value
 - But the dominant row hit spectrum locates at 3 clocks which is a desirable time-out value
 - When we adopt CBR alignment, the magnitude of the dominant row hit spectrum at 3 clocks becomes larger than that of CBR alignment, and a new row hit spectrum appears at 48 clocks
 - But it is not a good idea to set the time-out value to 48 clocks, because it results in more energy consumption due to large CL energy in the active mode
 - The optimal time-out values
 - MP3 decoder: 3 clocks
 - JPEG compressor, JPEG decompressor: 4 clocks, 4 clocks
 - MPEG4 decoder: 10 clocks

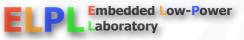
- Shutting down the SDRAM is conducted by the idle time distribution
 - It is important to count in both dynamic cost and static cost in calculating mode control energy overhead
 - ♀ For I → IPD → I (when using idle-mode power down), energy cost is $(0.0038 + 1.6 \cdot 10^{-4}n)\tau$, where n is the dwell time in state IPD in clock cycles

Energy reduction of SDRAM devices

- Mid-performance configuration with auto-precharge policy
 - In most cases, auto-precharge policy achieves slightly better performance enhancement and lower energy consumption than active-page policy with conventional CRB address alignment
 - But, active-page policy with CBR address alignment achieves 2.9% performance enhancement on the average
 - When we use given delayed precharge policy with CBR alignment and idle-mode power down, we achieve 1.3% performance enhancement and 10.9% energy reduction on the average

App.	Reduction technique	CL	CD	WDD	Total	Reduction ratio (%)	Execution time (ms)
CJPEG	active page (CRB)	21.0	56.5	2.2	79.7	-11.8	130.5
	active page (CBR)	20.3	50.0	1.9	72.3	-1.4	123.5
	auto precharge	9.8	59.2	2.3	71.3	0.0	128.5
	auto precharge, power down	4.9	59.2	2.3	66.4	6.9	131.0
	delayed precharge (CBR)	12.6	54.6	2.0	69.2	3.0	125.0
	delayed precharge (CBR), power down	8.4	54.6	2.0	65.0	8.9	126.2

Energy consumption (mJ), 24M instructions



- High-performance configuration with active-page policy
 - Active-page policy with given CBR alignment not only consumes less energy but also enhances the performance than active-page policy with conventional CRB alignment
 - When we use given delayed precharge policy with CBR alignment and idle-mode power down, we achieve 2.4% performance enhancement and 25.1% energy reduction on the average
 - In addition, active-page policy with conventional CRB alignment does not increase the performance remarkably comparing with the other reduction techniques

App.	Reduction technique	CL	CD	WDD	Total	Reduction ratio (%)	Execution time (ms)
CJPEG	active page (CRB)	11.7	25.8	1.0	38.6	0.0	76.3
	active page (CBR)	11.5	23.4	0.9	35.8	7.3	73.6
	auto precharge	5.3	26.7	1.1	33.1	14.2	75.1
	auto precharge, power down	2.1	26.7	1.1	29.8	22.7	75.9
	delayed precharge (CBR)	6.0	26.0	1.0	33.1	14.3	74.1
	delayed precharge (CBR), power down	3.0	26.0	1.0	30.0	22.2	74.7

Energy consumption (mJ), 24M instructions

- Low-power SDRAM main memory system
 - The energy reduction schemes for memory buses and devices are orthogonal (independent)
 - Mid-performance configuration

Application	Original	Final	Reduction (%)
MP3	26.8	16.0	40.2
CJPEG	83.0	71.0	14.5
DJPEG	80.1	68.8	14.1
MPEG4	62.7	53.3	15.0

Energy consumption (mJ), 24M instructions

High-performance configuration

Application	Original	Final	Reduction (%)
MP3	21.3	11.6	45.5
CJPEG	44.9	32.8	26.8
DJPEG	47.2	34.6	26.6
MPEG4	50.4	39.0	22.7

Energy consumption (mJ), 24M instructions

