Priority-Driven Scheduling of
Periodic Tasks (2)
- Chapter 6 -

Schedulable utilization bound

» Simpler method for the schedulabiity check

Utilization

* A periodic task’s utilization U; of an active resource is the ratio
between its execution time and period: U, = C/p;

* Given a set of periodic tasks on an active resource, e.g. the CPU,
the CPU’s utilization is equal to the sum of periodic tasks’

utilization: C
U=y —
i D

* (Can we find a bound called “schedulable utilization
bound” under which a task set is guaranteed to be
schedulable?

ifU = Z G <U,,.ma» task set is schedulable
i Pi

Processor utilization factor

» For a given algorithm A, we are interested in finding its
schedulability bound (e.g., the schedulability bound of EDF is 1)

Uuby, 1

0 U b

Processor utilization factor

W})n - Py)
° \

)
° ° ° ° °
° ° ° ° R °
° °
°
. ° ° ° ° ° ° °
Entiresetof te;;—¢,)
° °
° with fixed (p,, ... g,

G

(o] (o] (<]
\v/ © Fully utilized

Find the minimum utilization factor among all fully utilized dots
(barelly schedulable task set)

Which pattern of e and p values?

* Now, we can consider only (e and p) combinations that make the system
barely schedulable.

* How to find a (e and p) combination that has the minimal utilization
factor?

* Always start with examples—> intuition=> generic theorem

0 3 6 ‘9 0 3 6 9

| | | \ I N R B

0 7 0 7

I e S B e e e
U=2/3+2/7 U = (2-A)/3 + (2+2A)/7

decrease: A/3
increase: A 7/3 |/7 < A(7/3)/7=A/3

Which pattern of p values?

* For e values: “No-overflow theorem”
* What about p values?

0 3 6 9 3 6 9

o I i N e B I s B

0 7 0 7

L — 1 —1 | | 71 1 |
U=1/3+4/7 U = 1/(3*2) + (4+1)/7

Decrease: 1/3 — 1/(2*3)=1/(2*3)
Increase: 1/7

Since 7 > 2*3, U decreases

Transform (Ratio 3) to 2

{&l e te,=py; where{&—l =3, eg. [Ql2+4=10
Py Py 4

10 p, is doubled, so
{p2~‘el+e2+el=p2, if{pz—|=2 (——‘2+4+2=10 we obtain ratio 2
2p, 2p, 2%4 among the periods
(6714_672)_(6714.@) (Z+i)_(2 +4+2)>0
P D, 2p, P, 4 10 2%4 10

= (-5 0,if p, >2p,
2p, D,

Since{&w =3, wehave3 > P2y, Thus,1.5 > P2 o1 and {L—‘ =2; p2>2p,
Py P 2p, 2p,

— — —
4 8

1 ewm ew

0 10

Transform (Ratio k > 2) to 2

P e +e,+(k—2)e, =2e +e,+(k—2)e = p,; after transform
(k=Dp,

q&}[: +ez+(k—2)elj

ph P (k=Dp, P2

_ [(k -2)e, 4 (k=2)e,] > 0,since (k—1)p, < p,
(k=Dp,)2

pz—l =k, wehave k >&>k—1.Thus,i S >1and{pz—l
P », k=1~ (k-1p, (k=Dp,
pz—lel +e, =p,; original

b

The Remaining Free Variables

* The computation time for each task is as follows
€, = Py = Pi15€3 = P3 = Pys--5€ =

w1 = Pa T Pao
e

. =P, 2(e,+te,+...+e,_)

p,—-2(p,—-p,+ps—pP,+...+p,—p,)
=2p1_pn

Quiz: what are the remaining free variables?

what the type of the variables?

what is the standard tool to get a maximum or minimal?

Putting Things Together

* The tasks’ pattern that leads to minimal
utilization 1s

— the execution time shall not overflow

— the period ratip between any pair of low

prierity task apd_high priotity task should be

l¢ss than 2 L9nd grg%ietthan 1) |
‘p3

| -

Solving the PDE

U=b 4 & _PrmP PP 2P P,
Py P, by P b,
Py D5 Pu (2ZPPyePan
P P Py PrePyaiPy
2 .
=R+ttt —n; where 1, = Pis
By, D,

set—U= 0; we have
Y

Wrer, =2 Oy nrer, =2 (2. nnerl, =2 (n-1)
M/2)=1 =>r=rn
Dividing them successively,we have n,=r, =...=r,_,

Plug it back to (1) we have r =2'"

U=m-1)2""+ —n=n2"" -1)

o (n=1)/n

The L&L Bound

A set of n periodic task is schedulable if :

I AP S (L)
P P> P

U()=1.0 U@)=0756 U(7)=0.728
U(2)=0.828 U(5)=0.743 U(8)=0.724
U(3)=0.779 U(6)=0.734 U(9) = 0.720

For harmonic task sets, the utilization bound is U(n)=1.00 for all n. For large
n, the bound converges to /n 2 ~ 0.69.

The L&L bound for rate monotonic algorithm is one of the most significant
results in real-time scheduling theory. Its derivation also shows a wealth of

analysis techniques that are useful in many new situations when considering
static priority scheduling.

Summary of Utilization Bound

* The minimum utilization factor among all barely schedulable task sets
is a sufficient bound for the schedulability
* One time check with simple comparison
« Still sufficient condition
— even if task phase never make critical instant
— execution times are smaller than the given values
— inter-release time is longer than the given periods
* Problems
— Only sufficient condition

— we cannot say anything if utilization is higher than the bound — safe
choice is to assume it is not schedulable

Enhancement of Utilization Bound

* L&L bound takes the worst case (with minimum utilization factor)
worrying about all possible values of execution times and periods

+ If some parameters are fixed, L&L worst case may not happen, and
hence L&L bound is unnecessarily pessimistic for such limited
problem scope

* What if we know period values?
* The more we know the higher is the schedulability bound.

L&L Bound (Review)

U,,;, can be found when
Y U
PEp,SSp<2p,
Usw. U
Vs U
All possible U
combinations ub u
of execution U m h
times and i | = u
periods : U, U ’
i]
Ve vy
U |] |
Y| U
Ys , U

U]ub

The tight bound when period
values are fixed

‘ The previous condition
IU.,Q, U cannot give the U, ,, when
period values are fixed.
Up U
1SS U The given period values
U, U may not meet
: U PSP, S Sp S2p;.
: U U
; In such case, no simple
All possibl LA IV ; ;
IL‘?SSlt‘ ° ‘ 1 relation exists among
combinations ; U, . .
of execution ; : P, u execution times for U,
times with : U U
fixed periods ; ;
; Y LU
U—>Uyy

We know period values
(pla pza T pn)

Entire Set of (¢,...€, p;, --- Py)

o o o o
o o (9] ° o °
o
o o
o (9] ° ° (9] o ° (9]
Efrire-serof T Fo)
° with fixed (p,, ... o, °

\v/ [} Fully utilized

Find the minimum utilization factor within the limited scope

Examples

(Execution time alloc. for fixed period values)

l l

; } ; }

; L 0‘ :

;) 0‘)
Examples

(Execution time alloc. for fixed period values)

l
0__2! 0l 211
- o 0‘ !
o= 0‘ i

10

Examples

(Execution time alloc. for fixed period values)

P R T T
= @ e Lo B

L m | L mm m
| e l l . l

Optimization Formulation

* Actually, minimization problem

Minimize Zn: S

j=1 P;
Subject to

"Barely schedulable"
where p, (1< j < K)are fixed values

and e, (1< j < K)are free variables

11

Use Linear Programming

+ Level-i bound U?°*": only guarantees the schedulability of task i
U/ = minimize Z £
=1 P
subject to

i—1
z { L }ei +e, < p,, // make task ischedulabl e
j=1| P

i—1
> {fﬂej +e 2t forallt,(1<a< M)/ make [0, p,|fully utilized
j=1| P

where ¢,(1 < a < M) are the series of all the release times

of higher priority t asks in [0, P,-]-

+ System-level bound U?**: guarantees the schedulability of the task set

U bound — mriln Uibolmd
i=1

LP SOLVER

Problem description (inFile)

min: 0.35 x1 + 2.03 x2;
2.01 x1 +0.32 x2=120.0;
-4.0x1+3.3x2<=5.0;

int x2, x1;

Run Ip_solver

Ip_solver < inFile > outFile

Output file (outFile)

Value of objective function: 0.8599
x1 20
x2 15

12

Practical Issues

* Practical Issues

— What if there is a non-preemptable code section (e.g.,
system call)?

— What if the context switch overhead is not negligible?
— Tick scheduling?
— The deadline is earlier than the period?

Non-preemptable code section

» anon-preemptable code section (NPS) of a low
priority task blocks high priority task

— How to take this into account in time-demand analysis?

b, =max NPS,
j=i+l :
i—1 7
7 =ei+bi+z —e;
j=1| P

13

Non-preemptable code section

* anon-preemptable code section (NPS) of a low priority
task blocks high priority task

— How to take this into account in utilization bound check?

b, = max NPS,

Jj=i+l

i—1 .))
z—f et b, < U(i); task by task check
j=1 P b

e, n b, .
Z—’ +max —- < U(n); single check
EN A &

Deadline earlier than period?

* Time-demand analysis naturally works for this case
* What about utilization bound check?
— Two utilization inflation methods

D, < p,

1

e e+p —D, . o
z A B & et 0 (7); increase execution time
=1 P; pi

i—1

e e,
z Syl <y (i); decrease period
apr, D

14

