Priority-Driven Scheduling of
Periodic Tasks (2)
- Chapter 6 -

Schedulable utilization bound

» Simpler method for the schedulabiity check




Utilization

* A periodic task’s utilization U; of an active resource is the ratio
between its execution time and period: U, = C/p;

* Given a set of periodic tasks on an active resource, e.g. the CPU,
the CPU’s utilization is equal to the sum of periodic tasks’

utilization: C
U=y —
i D

* (Can we find a bound called “schedulable utilization
bound” under which a task set is guaranteed to be
schedulable?

ifU = Z G <U,,.ma» task set is schedulable
i Pi

Processor utilization factor

» For a given algorithm A, we are interested in finding its
schedulability bound (e.g., the schedulability bound of EDF is 1)

Uuby, 1

0 U b




Processor utilization factor
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Find the minimum utilization factor among all fully utilized dots
(barelly schedulable task set)

Which pattern of e and p values?

* Now, we can consider only (e and p) combinations that make the system
barely schedulable.

* How to find a (e and p) combination that has the minimal utilization
factor?

* Always start with examples—> intuition=> generic theorem
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U=2/3+2/7 U = (2-A)/3 + (2+2A)/7

decrease: A/3
increase: A 7/3 |/7 < A(7/3)/7=A/3




Which pattern of p values?

* For e values: “No-overflow theorem”
*  What about p values?
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U=1/3+4/7 U = 1/(3*2) + (4+1)/7

Decrease: 1/3 — 1/(2*3)=1/(2*3)
Increase: 1/7

Since 7 > 2*3, U decreases

Transform (Ratio 3) to 2

{&l e te,=py; where{&—l =3, eg. [Ql2+4=10
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10 p, is doubled, so
{p2~‘el+e2+el=p2, if{pz—|=2 (——‘2+4+2=10 we obtain ratio 2
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Transform (Ratio k > 2) to 2

P e +e,+(k—2)e, =2e +e,+(k—2)e = p,; after transform
(k=Dp,

q&}[ : +ez+(k—2)elj

ph P (k=Dp, P2

_ [(k -2)e, 4 (k=2)e, ] > 0,since (k—1)p, < p,
(k=Dp, )2

pz—l =k, wehave k >&>k—1.Thus,i S >1and{pz—l
P », k=1~ (k-1p, (k=Dp,
pz—lel +e, =p,; original
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The Remaining Free Variables

* The computation time for each task is as follows
€, = Py = Pi15€3 = P3 = Pys--5€ =

w1 = Pa T Pao
e

. =P, 2(e,+te,+...+e,_ )

p,—-2(p,—-p,+ps—pP,+...+p,—p,)
=2p1_pn

Quiz: what are the remaining free variables?

what the type of the variables?

what is the standard tool to get a maximum or minimal?




Putting Things Together

* The tasks’ pattern that leads to minimal
utilization 1s

— the execution time shall not overflow

— the period ratip between any pair of low

prierity task apd_high priotity task should be

l¢ss than 2 L9nd grg%ietthan 1) |
‘p3
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Solving the PDE

U=b 4 & _PrmP PP 2P P,
Py P, by P b,
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=R+ttt —n; where 1, = Pis
By, D,

set—U= 0; we have
Y

Wrer, =2 Oy nrer, =2 (2. nnerl, =2 (n-1)
M/2)=1 =>r=rn
Dividing them successively,we have n,=r, =...=r,_,

Plug it back to (1) we have r =2'"

U=m-1)2""+ —n=n2"" -1)

o (n=1)/n




The L&L Bound

A set of n periodic task is schedulable if :

I AP S (L )
P P> P

U()=1.0 U@)=0756  U(7)=0.728
U(2)=0.828 U(5)=0.743  U(8)=0.724
U(3)=0.779 U(6)=0.734  U(9) = 0.720

For harmonic task sets, the utilization bound is U(n)=1.00 for all n. For large
n, the bound converges to /n 2 ~ 0.69.

The L&L bound for rate monotonic algorithm is one of the most significant
results in real-time scheduling theory. Its derivation also shows a wealth of

analysis techniques that are useful in many new situations when considering
static priority scheduling.

Summary of Utilization Bound

* The minimum utilization factor among all barely schedulable task sets
is a sufficient bound for the schedulability
* One time check with simple comparison
« Still sufficient condition
— even if task phase never make critical instant
— execution times are smaller than the given values
— inter-release time is longer than the given periods
* Problems
— Only sufficient condition

— we cannot say anything if utilization is higher than the bound — safe
choice is to assume it is not schedulable




Enhancement of Utilization Bound

* L&L bound takes the worst case (with minimum utilization factor)
worrying about all possible values of execution times and periods

+ If some parameters are fixed, L&L worst case may not happen, and
hence L&L bound is unnecessarily pessimistic for such limited
problem scope

*  What if we know period values?
* The more we know the higher is the schedulability bound.

L&L Bound (Review)
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The tight bound when period
values are fixed

‘ The previous condition
IU.,Q, U cannot give the U, ,, when
period values are fixed.
Up U
1SS U The given period values
U, U may not meet
: U PSP, S Sp S2p;.
: U U
; In such case, no simple
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We know period values
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Find the minimum utilization factor within the limited scope




Examples

(Execution time alloc. for fixed period values)
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Examples

(Execution time alloc. for fixed period values)
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Optimization Formulation

* Actually, minimization problem

Minimize Zn: S

j=1 P;
Subject to

"Barely schedulable"
where p, (1< j < K)are fixed values

and e, (1< j < K)are free variables
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Use Linear Programming

+ Level-i bound U?°*": only guarantees the schedulability of task i
U/ = minimize Z £
=1 P
subject to

i—1
z { L }ei +e, < p,, // make task ischedulabl e
j=1| P

i—1
> {fﬂej +e 2t forallt,(1<a< M)/ make [0, p,|fully utilized
j=1| P

where ¢,(1 < a < M) are the series of all the release times

of higher priority t asks in [0, P,-]-

+ System-level bound U?**: guarantees the schedulability of the task set

U bound — mriln Uibolmd
i=1

LP SOLVER

Problem description (inFile)

min: 0.35 x1 + 2.03 x2;
2.01 x1 +0.32 x2=120.0;
-4.0x1+3.3x2<=5.0;

int x2, x1;

Run Ip_solver

Ip_solver < inFile > outFile

Output file (outFile)

Value of objective function: 0.8599
x1 20
x2 15
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Practical Issues

* Practical Issues

— What if there is a non-preemptable code section (e.g.,
system call)?

— What if the context switch overhead is not negligible?
— Tick scheduling?
— The deadline is earlier than the period?

Non-preemptable code section

» anon-preemptable code section (NPS) of a low
priority task blocks high priority task

— How to take this into account in time-demand analysis?

b, =max NPS,
j=i+l :
i—1 7
7 =ei+bi+z —e;
j=1| P
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Non-preemptable code section

* anon-preemptable code section (NPS) of a low priority
task blocks high priority task

— How to take this into account in utilization bound check?

b, = max NPS,

Jj=i+l

i—1 . ) )
z—f et b, < U(i); task by task check
j=1 P b

e, n b, .
Z—’ +max —- < U(n); single check
EN A &

Deadline earlier than period?

* Time-demand analysis naturally works for this case
* What about utilization bound check?
— Two utilization inflation methods

D, < p,

1

e e+p —D, . o
z A B & et 0 (7); increase execution time
=1 P; pi

i—1

e e,
z Syl <y (i); decrease period
apr, D
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