
1

Priority-Driven Scheduling of
Periodic Tasks (2)

- Chapter 6 -

Schedulable utilization bound

• Simpler method for the schedulabiity check

2

Utilization

• A periodic task’s utilization Ui of an active resource is the ratio
between its execution time and period: Ui = Ci/pi

• Given a set of periodic tasks on an active resource, e.g. the CPU,
the CPU’s utilization is equal to the sum of periodic tasks’
utilization:

∑=
i i

i

p
CU

• Can we find a bound called “schedulable utilization
bound” under which a task set is guaranteed to be
schedulable?

eschedulabl isset task , if bound
i i

i U
p
CU ≤=∑

Processor utilization factor
• For a given algorithm A, we are interested in finding its

schedulability bound (e.g., the schedulability bound of EDF is 1)

3

Processor utilization factor
Entire Set of (e1,…en, p1, … pn)

Entire set of (e1,…en)
with fixed (p1, … pn)

Fully utilized

Find the minimum utilization factor among all fully utilized dots
(barelly schedulable task set)

Which pattern of e and p values?
• Now, we can consider only (e and p) combinations that make the system

barely schedulable.
• How to find a (e and p) combination that has the minimal utilization

factor?
• Always start with examples� intuition� generic theorem

0

0

3 6 9

7

U = 2/3 + 2/7

0

0

3 6 9

7

U = (2-∆)/3 + (2+2∆)/7

  3/7/)3/7(/77/3 :increase
/3:decrease

∆=∆<∆
∆

4

Which pattern of p values?
• For e values: “No-overflow theorem”
• What about p values?

0

0

3 6 9

7

U = 1/3 + 4/7

0

0

3 6 9

7

U = 1/(3*2) + (4+1)/7

Decrease: 1/3 – 1/(2*3)=1/(2*3)

Increase: 1/7

Since 7 > 2*3, U decreases

Transform (Ratio 3) to 2
2 2

1 2 2
1 1

2 2
1 2 1 2

1 1

1 2 1 2 1

1 2 1 2

1 1
2 1

1 2

2

1

10; 3, . . 2 4 10
4

10, 2 2 4 2 10
2 2 2 * 4

2 4 2 4 2() () () () 0
2 4 10 2 * 4 10

() 0, 2
2

p pe e p where e g
p p

p pe e e p if
p p
e e e e e
p p p p
e e if p p
p p

pSince
p

     + = = + =         

     + + = = + + =         

+ ++ − + + − + >

= − > >

 



2 2 2

1 1 1

2
1

1

3, 3 2. ,1.5 1 and 2
2 2

Quiz: Show that if , we can transform T1's period to (k-1)p

and reduce the utilization.
(In professional paper, you write the last step

p p pwe have Thus
p p p

p k
p

 
= > > > > =  

  

 
= 

 

first and call it a lemma)

; p2 > 2p1

p1 is doubled, so
we obtain ratio 2
among the periods

…

…
0 10

4 8

5

Transform (Ratio k > 2) to 2

21
2

1

1

1

2

12

1

1

2

2

1

1

2121121
1

2

221
1

2

1

2

1

2

1

2

1

2

)1(since ,0)2(
)1(
)2(

)2(
)1(

sformafter tran ;)2(2)2(
)1(

original ;

2
)1(

 and 1
)1(1

 Thus, .1 have we,

ppk
p
ek

pk
ek

p
eke

pk
e

p
e

p
e

pekeeekee
pk

p

pee
p
p

pk
p

pk
p

k
kk

p
pkk

p
p

<−>






 −+
−
−=








 −++
−

−







+

=−++=−++








−

=+








=








−
>

−
>

−
−>>=









The Remaining Free Variables

• The computation time for each task is as follows
1 2 1 2 3 2 1 1

1 2 1

2 1 3 2 1

1

; ; . . . ;
2 (. . .)
2 (. . .)

2

n n n

n n n

n n n

n

e p p e p p e p p
e p e e e

p p p p p p p
p p

− −

−

−

= − = − = −
= − + + +
= − − + − + + −
= −

• Quiz: what are the remaining free variables?

what the type of the variables?

what is the standard tool to get a maximum or minimal?

6

Putting Things Together

• The tasks’ pattern that leads to minimal
utilization is
– the execution time shall not overflow
– the period ratio between any pair of low

priority task and high priority task should be
less than 2 (and greater than 1)

p1

p2

p3

Solving the PDE

∂

1 11 2 1

1 1 1

3 1 2 12

1 2 1 2 1

1
1 2 1

1 2 1

2 2
1 2 1 1 2 1 1 2

2... ...

2
...

2... ;
...

0;

... 2 (1); ... 2 (2);...;

n n n n

n n n

n n

n n n

i
n i

n i

i

n n

e p p p pe p pU
p p p p p

p p p p pp n
p p p p p p

pr r r n where r
r r r p

Uset we have
r

r r r r r r r r

−

−

−

− −

+
−

−

− −

− −−= + + = + + +

= + + + + −

= + + + + − =

∂ =

= = 2
1

1 2

1 2 1

1/n

1/ 1 /
(1) /

... 2 (1)
(1) /(2) 1
Dividing them successively, we have ... 1

Plug it back to (1) we have r = 2

2(1)2 (2 1)
2

n

n

n n
n n

r n
r r

r r r

U n n n

−

−

−

= −
= => =

= = = =

= − + − = −

7

The L&L Bound

• U(1) = 1.0 U(4) = 0.756 U(7) = 0.728
• U(2) = 0.828 U(5) = 0.743 U(8) = 0.724
• U(3) = 0.779 U(6) = 0.734 U(9) = 0.720

• For harmonic task sets, the utilization bound is U(n)=1.00 for all n. For large
n, the bound converges to ln 2 ~ 0.69.

• The L&L bound for rate monotonic algorithm is one of the most significant
results in real-time scheduling theory. Its derivation also shows a wealth of
analysis techniques that are useful in many new situations when considering
static priority scheduling.

1 /1 2

1 2

A se t o f p e rio d ic ta sk is sch ed u lab le if :

... (2 1)nn

n

n
ee e n

p p p
+ + + ≤ −

Summary of Utilization Bound
• The minimum utilization factor among all barely schedulable task sets

is a sufficient bound for the schedulability
• One time check with simple comparison
• Still sufficient condition

– even if task phase never make critical instant
– execution times are smaller than the given values
– inter-release time is longer than the given periods

• Problems
– Only sufficient condition
– we cannot say anything if utilization is higher than the bound – safe

choice is to assume it is not schedulable

8

Enhancement of Utilization Bound

• L&L bound takes the worst case (with minimum utilization factor)
worrying about all possible values of execution times and periods

• If some parameters are fixed, L&L worst case may not happen, and
hence L&L bound is unnecessarily pessimistic for such limited
problem scope

• What if we know period values?
• The more we know the higher is the schedulability bound.

L&L Bound (Review)

U

U

U

U

U

U

U

U

U

Uub

Uub

Uub

Uub

Uub

Uub

Uub

Uub

Uub

Ulub

All possible
combinations
of execution
times and
periods

,2 121 pppp k ≤≤≤≤ �

Ulub can be found when

9

The tight bound when period
values are fixed

U

U

U

U

U

U

U

U

U

Uub

Uub

Uub

Uub

Uub

Uub

Uub

Uub

Uub

Ulub

All possible
combinations
of execution
times with
fixed periods

The previous condition
cannot give the Ulub when
period values are fixed.

Ulub

The given period values
may not meet

.2 121 pppp k ≤≤≤≤ m

In such case, no simple
relation exists among
execution times for Ulub.

We know period values
(p1, p2, …, pn)
Entire Set of (e1,…en, p1, … pn)

Entire set of (e1,…en)
with fixed (p1, … pn)

Fully utilized

Find the minimum utilization factor within the limited scope

10

Examples
(Execution time alloc. for fixed period values)

0 10 20 30

0 21

29

31

0

0

0 15 30

0 21

25

31

0

0

Examples
(Execution time alloc. for fixed period values)

0 10 20 30

0 21

29

31

0

0

0 15 30

0 21

25

31

0

0

11

Examples
(Execution time alloc. for fixed period values)

0 10 20 30

0 21

29

31

0

0

0 15 30

0 21

25

31

0

0

Optimization Formulation

()
() variablesfree are 1 and

 valuesfixed are 1 where
e"schedulablBarely "

Subject to

 Minimize
1

Kje
Kjp

p
e

j

j

n

j j

j

≤≤

≤≤

∑
=

• Actually, minimization problem

12

Use Linear Programming

• Level-i bound Uibound: only guarantees the schedulability of task i

[]

[].,0in askspriority thigher of
 timesrelease theall of series theare)1(where

utilizedfully ,0 make //)1(allfor

eschedulabl task make // ,

subject to

 minimize

1

1

1

1

i

1j

i

a

iaai

i

j
j

j

a

iij

i

j j

i

j

jbound
i

p
Mat

pMattee
p
t

ipee
p
p

p
e

U

≤≤

≤≤≥+












≤+












=

∑

∑

∑

−

=

−

=

=

• System-level bound Ubound: guarantees the schedulability of the task set

bound
i

n

i

bound UU
1

min
=

=

LP_SOLVER
• Problem description (inFile)

min: 0.35 x1 + 2.03 x2;

2.01 x1 + 0.32 x2 = 120.0;

-4.0 x1 + 3.3 x2 <= 5.0;

int x2, x1;

• Run lp_solver
lp_solver < inFile > outFile

• Output file (outFile)
Value of objective function: 0.8599

x1 20

x2 15

13

Practical Issues

• Practical Issues
– What if there is a non-preemptable code section (e.g.,

system call)?
– What if the context switch overhead is not negligible?
– Tick scheduling?
– The deadline is earlier than the period?

Non-preemptable code section

• a non-preemptable code section (NPS) of a low
priority task blocks high priority task
– How to take this into account in time-demand analysis?

j

i

j j

i
iii

j

n

iji

e
p
rber

NPSb

∑
−

=

+=












++=

=

1

1

1
max

14

Non-preemptable code section

• a non-preemptable code section (NPS) of a low priority
task blocks high priority task
– How to take this into account in utilization bound check?

check single);(max

checkby task task);(

max

11

1

1

1

nU
p
b

p
e

iU
p
be

p
e

NPSb

j

j
n

j

n

j j

j

i

ii
i

j j

j

j

n

iji

≤+

≤++

=

==

−

=

+=

∑

∑

Deadline earlier than period?

• Time-demand analysis naturally works for this case
• What about utilization bound check?

– Two utilization inflation methods

period decrease);(

timeexecution increase);(

1

1

1

1

iU
D
e

p
e

iU
p
Dpe

p
e
pD

i

i
i

j j

j

i

iii
i

j j

j

ii

≤+

≤−++

<

∑

∑

−

=

−

=

