Scheduling of Aperiodic and Sporadic
Jobs in Priority-Driven Systems
- Chapter 7 —

(Dynamic Priority Framework)

Dynamic priority servers

» We focused on fixed priority servers so far.
Such servers can be used along with RM.

* Now, we will focus on dynamic priority
servers. They are used along with EDF

Constant Utilization Server - 1

The key idea: a server is given budget u,. Upon the aperiodic request of e,
set the server budget e, = e and adjust the relative deadline D, such that
e/D, =u, i.e., D, = eJu..

kN s B o B s
0 6 16 20

u,=05 u,=05 u,=05 u,=05

s s

34

* Rule 1: initialization: e, = 0; and d, = 0;
Rule 2: when an aperiodic request e arrives at time t,
— A) If the queue is not empty, join the queue
— B)elseift <d, (d, is the current server deadline), do nothing (just join the queue)
- else d, =t +elug e, =e;
* Rule 3: when t becomes equal to d,
— A) If the queue is not empty, serve the head of the queue: d, = d, + e/u,; e, = e.
— B) else do nothing.

Constant Utilization Server - 2
T N N N B B B
ST U I A W 0 s A I
T=(4519) | [] nn T |_| |‘| —

0 235

u=0.25 | 7“_. l15|_. B |

| |
Aperiodic L0 20
arrivals
3.0

6. 15,5

.9
e Att=3, A arrives, e,=__ , d=
« Att=3, A arrives, e,= 1, d= 3+1.0/025=7

* Att=6.9, A,arrives, what should we do?
e Att= _.er= ,d=

S
e Att=7, e=20, d=7+20/0.25=15

* Att=15, donothing. Why? Att=155,¢e,=2.0, d=155+2.0/0.25=23.5

Constant Utilization Server - 3

» Giving a set of periodic tasks and a set of CUSs, if the total utilization
is no more than 1, the system is schedulable.
» How can we prove the above?

— What is the closest result that we know? How did we do it? Can we reuse
the method directly? Can we convert this new problem into the old form
by transformations?

Constant |_| |—| |
Utilization Server |

Periodic |] | | | |

Job Tj;

Which Part of this can be
Reused?

What needs to be modified in this figure?...

Proof by contradiction: We assume that the total utilization is no more than 1 but J,,
misses its deadline.

Computational demand of T, in [0,]

t 0 We sum up J,, and all the jobs completed
{ — 1 J e, + e, > t | beforely. IfJ, missesits deadline t, the
Py 2 sum must be greater than t
t
— | e; + e, >t
[2
t t
e, + e, >t
P P
LESI. T |
p 1 p 2
T]_ l—l | [1 I 1 |

CUS: Counting the Demands

Quiz: what is the assumption to be contradicted? can you
explain what is going on here?

d;xu,+d,xu,+d,xu,+e>p
(d,+d,+d;)xu,+e>p
w1+d2+dgu +E_

s >1
P p
e
ug+—>1

p
E‘_ dl _’E dz E d3 i
} 1 I 1
= !

;0] P

TBS: Get it done earlier

T N N N B B B
ST U I A W 0 s A I

=689 | [00 [[0 1
0 7 515 235
u=0.25 | m m UL DN |

|
Apenod'C 1.0 2.0
arrivals
30 6

.9 15,5

» There is an idle time between 14 and 15. Suppose that A, arrives at 14
instead. CUS will not do anything until 15 and the CPU still idles,
since the CUS already used its share within [7, 15].

* One would like to use such idle time to execute earlier and thus
achieving a better response time.

Total Bandwidth Server - 1

» The key idea: same to CUS except it is possible to have an earlier
replenishment of the budget. The sequence of deadlines is the same.

* Rule 1: initialization: e, = 0; and d, = 0;
e Rule 2: when an aperiodic request e arrives at time t,
— A) If the queue is not empty, join the queue

- B)else d,=max(t, d,) + e/ug; e, = e and the aperiodic request is ready to
execute;

* Rule 3: at the completion of executing aperiodic request

— A) If the queue is not empty, serve the head of the queue: d, = d, + e/ug; e, = e.
— B) else do nothing.

* In short, when the kth aperiodic request arrives at time t = r,, it receives a
deadline: e,

S

TBS: An Incremental Improvement

115 18 21 24

CEE N AT N N N £ N A I A
LESCCO T N o O B O o O N A
=689 | [00 [[0 1

23

0 7 115
u=025 | R B m maa |
Aperiodic EO h H
arrivals
3.0 6.9

 Att=3, A arrives, e,= 1, d= 3+1.0/0.25=7

 Att=6.9, A,arrives, e,= 2.0, d=max(6.9, 7) +2.0/0.25= 15

o Att=14, Ajarrives, e,=2.0, d=max(14,15)+2.0/0.25 =23

» Compared with CUS, the deadline setting is IDENTICAL. However, the

budget replenishing time can be different. Consider A, under CUS, it will be
15, but it is moved to 14 under TBS.

* Quiz: will TBS move cause tasks missing deadlines if CUS does not? (see
Textbook)

CUS vs. TBS

As
s 1
A A A,
2 1 [1] 2]
v AL v
cus e T e B sy F—
0 4 6 12 16
u=0.5 u=0.5 u=0.5 u=0.5
TBS ——
|
—/

Schedule when there 1 [1 T]
are no other tasks

Instantaneous Bandwidth is not constant. But, the
Total Bandwidth is constant, u=8/16=0.5

Feast and Famine Under TBS
VS 0 A (N S M A AU

TBS2,e=3 | I I I I I | U=
0 8 36

e TBS 2 has no arrival during [0,8] and TBS 1 is backlogged since 0 and
frontloads the CPU completely. At 8, the deadline of
— 9t request to TBS 1 has deadline at 9*4 = 36.
— 1strequest of TBS 2 has deadline at 8+3/(3/4) =12, 2" at 16, 3 at 20, 4th at 24 ...
— So [8, 36] is the “starvation” time for TBS 1 requests
 Fairness definition: each backlogged server over any given time interval should
get fractions of CPU cycles proportional to the server size.

TBS “Starvation”
o holot Frfn? T @nfn T wmes
« 00 non. T 0 | 18 TBS2
s | [i — | w4 TBS3

=3 | — T |] | 3/8 TBS4

0 18 26 34

« Key Observation: TBS moves release time forward but deadlines are
unchanged. So it is front loaded. Later on, with deadlines further and further
away, it cries unfair...

e There is no arrival in TBS4 during [0, 18]. Starting at 18, the deadline of

— The 9™ job of TBS1 has deadline at 4*9= 36

— The 5% job of TBS2 has deadline at 5*8= 40

— The 3 job of TBS3 has deadline at 3*12=36

— The 1%t job of TBS4 has deadline at d = 18+3/(3/8)=26 and 2" job is at
26+3/(3/8)=34

— During [18, 27], TBS1 does not have any share of CPU...

A Quick Fix

» TBS moves release times forward but deadlines are unchanged. So it is
front loaded. Later on, with deadlines further and further away, it cries
unfair...

» CUS does not frontload its executions and hence does not have the
same problem. But it cannot use any leftover CPU cycle. So the quick
fix is:

* A quick fix is therefore
— to use TBS servers.

— When CPU idles, restart all the backlogged TBS servers. By restarting, we
mean that we shall erase the histories and view the system as if it starts
from t = 0 again.

— Which lemma did we learn that allows us to do this?

TBS/Restart when idle
woe o doof 4 f FOF T

= I 3/4
TBS 2,e=3 [1 [[]
0 8 34

TBS 2 has no arrival during [0,8] and TBS 1 is backlogged since 0 and frontloads the
CPU completely.

e At 1, processor idles and we reset. So the deadline is at 5 instead of 8!

« At 8, processor idles and we reset. So the deadline is at 12.

e At 8, TBS2 is backlogged with deadline at 8+3/(3/4) = 12, 2"d at 16, 3 at 20,...
« After 8, the deadlines of TBS1 are at 12, 16, 20, 24....

Constant Bandwidth Server (CBS) |

TBS and CUS assume that the computation time of the aperiodic tasks is known in
order to compute the next server deadline. However, sometimes the computation
time of an aperiodic task is unknown or variable (see MPEG player).

Quiz: What does happen when an aperiodic task is served by a TBS/CUS and it does
not terminate by its declared execution time?

Constant Bandwidth Server (CBS) 11

TBS and CUS assume that the computation time of the aperiodic tasks is known in
order to compute the next server deadline. However, sometimes the computation
time of an aperiodic task is unknown or variable (see MPEG player).

Quiz: What does happen when an aperiodic task is served by a TBS/CUS and it does
not terminate by its declared execution time?

It depends on the server implementation: according to the server definition, we do
not need to monitor the server budget when scheduling the aperiodic requests. In
fact, tasks are scheduled according to their absolute deadline (EDF).

If an aperiodic overruns, it can cause a hard periodic task to miss its deadline.

To overcome these problems, the CBS has been introduced

Constant Bandwidth Server (CBS) I

The CBS is similar to the TBS server but it does not need the aperiodic task
computation time in order to compute the server deadline.

The execution of the aperiodic tasks is continuously monitored by means of the
current budget c,: it represents the remaining available computation time for the
current server deadline d,.

Q, is the maximum budget; P, is the server period. The ratio U, = Q, / P, is the server
bandwidth.

Constant Bandwidth Server (CBS) IV

The key idea:
- if an aperiodic arrives at time t, its available budget is ¢, = Q, and the server
deadlineisd, =t +P;
if the aperiodic request completes and there is some budget left, the next request
can be served by using the same server deadline and the leftover budget
If the budget is exhausted, set ¢, = Q, and d, = d, + P;

T, T An example of a job J, (r,=3,¢,=5)
handled by the CBS server
0 5 Lo L5
/"-J_H‘-h“‘-&
JZ S
3 9 L5
[
3 s
Q=3
L
T,=6
0 3
| I SR U S AU St R ITY PO]

Constant Bandwidth Server (CBS) V

CBS rules:

if a request arrives when another aperiodic request is pending, the new request is
inserted in the server queue (the server queue is sorted according to any policy);

Whenever the budget is exhausted (c, = 0), it is always recharged up to the
maximum value (c, = Q,) and the server deadline is postponed by a server period
(dy=d,+ Ty);

When a request is finished, the next request (if any) waiting in the server queue
is served with the current budget c, and server deadline d;

when a new request arrives at time t and the server is currently idle,
if ¢, < (d;-t) U,, the request is served by using the current budget c, and server
deadline d,. Otherwise, the budget is recharged up to the maximum value (c, =
Q,) and the server deadline is set as d, = t + T,) — remaining budget c, can be
used only if it does not badly impact other tasks during [t, d.].
c d.-t
; R—
t d

S

10

CBS example

6 12 18 24
o e emom | mm | c
0 9 18 27 p
R S
Sty o e S
& | —— T, 319
"2 4 6 8§ 10 12 14 16 18 20 22 24 26 T.| 2|6

EI 4 6 8 10 12 14 16 18 20 22 24 26

t=2 Request arrives (CBS idle) Cs=Qq d,=t+T,=8
t=4 Budget exhausted ¢ = Qs d;=d,+T,=14
t=12 Request arrives (CBS idle) c=Qq d,=t+T,=18
t=14 Budget exhausted c=Qq d,=ds+T,=24
t=20 Request arrives (CBS idle) c;and dg are kept unchanged
t=21 Budget exhausted c=Qq d;=dg+ T,=30

Schedulability Analysis of Sporadic Tasks

« A sporadic task consists of a stream of jobs with variable execution times and
irregular arrivals. Unlike aperiodic tasks, sporadic tasks have firm deadlines.
There is usually a minimal inter-arrival time and max execution time.

» The instantaneous utilization of a sporadic job J; is the ratio e/(d; — r;). A
sporadic job is said to be active within its feasible interval [r;, d;]

« Sporadic Job Theorem: Given a set of independent, preemptive sporadic jobs,
they are schedulable by EDF if the total instantaneous utilization of all active
jobs is no greater than 1 at all times t.

S = [SR I S
Ry — |

t

Who is interested in the proof can check the Liu book at page 219

11

Necessity of Sporadic Job Theorem?

* Notice that the sporadic job theorem is only a sufficient test, not
necessary.

» To convince yourself: consider three sporadic jobs J;(r=0,e=2,d =
4);J,(r=1,e=2,d=5); J;(r=2,e=2,d =6). The task set is
schedulable, however the total instantaneous utilization of the active

jobsis 1.5 in interval [2, 4].
15T Instantaneous utilization

3 | l

J
2 05

J3

Quiz: What is the instantaneous utilization of active jobs in interval [0, 6]?

Schedulability Analysis of Sporadic Tasks
(Case 1: max instantaneous utilization is known)

» The utilization of a sporadic task T; is the max of its jobs’
instantaneous utilization:

~ e .

Ui = max; —-—

ij 0

T =1 S “ I

e Theorem: A set of sporadic tasks using EDF is schedulable if their
total utilization is no greater than 1.

e Corollary: A system of periodic tasks and sporadic tasks is
schedulable under EDF if the total utilization is no greater than 1.

12

Schedulability Analysis of Sporadic Tasks

(Case 2: max instantaneous utilization is unknown)
- online “Job by job” admission -

» All these results are sufficient conditions based on worst case analysis.

e On-line admission test:

— Find the available capacity for sporadic tasks; e.g., if periodic tasks take
70% then there is 30% available bandwidth for sporadic tasks

— Keep track of the total instantaneous utilization of all active sporadic
JOBS.
« When a job arrives, add its instantaneous utilization to the total
« When a job deadline is reached, subtract its instantaneous utilization from the
total
« Make sure that the total instantaneous utilization is no greater than the
available bandwidth for sporadic jobs.

How to handle sporadic tasks in
Fixed-Priority System?

» If min-inter-release-time (p) and max-execution-time (e) are known,
reserve a portion using a sporadic server with capacity (e/p). If all
periodic tasks and sporadic servers are schedulable, all sporadic jobs
meet their deadlines.

e Otherwise, Online “Job-by-Job” admission is the only choice

— On-line admission test:
¢ Find the available capacity for sporadic jobs; e.g., if periodic tasks take 70%
then there is 30% available bandwidth for sporadic tasks
« Make a sporadic server with capacity 30% (e.g., e =3, ps = 10).
« When a sporadic job J (e, d) arrives, check if the sporadic server can provide e time units
before d. But, how? It maybe a problem in the final exam.

13

