
Resources and Resource Access Control
(only on Fixed-Priority System)(only on Fixed Priority System)

- Chapter 8 -

Overview

• Resource access (Mutual Exclusive)
– Priority inversion
– Unbounded priority inversion

• Resource access control protocolp
– Priority inheritance protocol
– Priority ceiling protocolPriority ceiling protocol

Mutually exclusive resource sharingMutually exclusive resource sharing
release

A=0 A=1

CPU

Rd AddTask1
release

Wr

A=1

Task1
(High)

Task2
(Low)

Rd Wr
Task2

Add

A releaseA=0
A=2

Rd AddTask1
release

try lock
BLOCK

A=1

Wr

A 2

Rd Wr
Task2

lock unlock

Add

A 1

Mutually exclusive resource sharing
(Another example)

release

CPU

C RTask1
release

Task1 Task2

C R
Task2

Task1
(High)

Task2
(Low) R2 R1Plant

release

COM C RTask1
release

try lock
BLOCK

Plant
C R

Task2
lock unlock

R2 R1Plant

Unbounded Priority InversionUnbounded Priority Inversion
• When a high priority task is delayed by lower priority tasks, it is said g p y y y p y ,

that priority inversion has occurred and the high priority task is
blocked by the lower priority task.

• Priority inversion occurs during synchronization.

h k h i d l d h f l• When tasks synchronize, we expect delays due to the use of mutual
exclusion.

• And we expect that the delay due to mutual exclusion is a function of
the duration of the critical sections.

• When the duration of priority inversion is not bounded by a function of
the duration of critical sections, unbounded priority inversion is said to
occuroccur.

Unbounded Priority Inversion U bou ded o y ve s o
τ1:{...P(S)...V(S)...}Legend

S Locked τ1:{...P(S)...V(S)...}
τ3:{...P(S)...V(S)...}

S Locked
Executing
Blocked B

S Locked S Unlocked

τ1(h)
B

Attempt to Lock S

τ2(m)

S Locked S Unlocked

τ3(l)

time

Mars Pathfinder (Rover)

What really happened on Mars?W e y ppe ed o s?
• The Mars Pathfinder mission was widely proclaimed as "flawless" in the early days after

its J l 4th 1997 landing on the Martian s rface S i l d d it ti lits July 4th, 1997 landing on the Martian surface. Successes included its unconventional
"landing" -- bouncing onto the Martian surface surrounded by airbags, deploying the Sojourner
rover, and gathering and transmitting voluminous data back to Earth, including the panoramic
pictures that were such a hit on the Web. But a few days into the mission, not long after
P thfi d t t d th i t l i l d t th ft b i i t t lPathfinder started gathering meteorological data, the spacecraft began experiencing total
system resets, each resulting in losses of data. The press reported these failures in terms such as
"software glitches" and "the computer was trying to do too many things at once".

• VxWorks provides preemptive priority scheduling of threads. Tasks on the Pathfinder
spacecraft were executed as threads with priorities that were assigned in the usual manner
reflecting the relative urgency of these tasks.

• Pathfinder contained an "information bus", which you can think of as a shared memory area
used for passing information between different components of the spacecraft. A bus
management task ran frequently with high priority to move certain kinds of data in and
out of the information bus. Access to the bus was synchronized with mutual exclusion
locks (mutexes).

• You can read more at http://sssup1 sssup it/~giorgio/mars/jones html• You can read more at http://sssup1.sssup.it/~giorgio/mars/jones.html

What really happened on Mars?What really happened on Mars?
• The meteorological data gathering task ran as an infrequent, low priority thread,

and sed the information b s to p blish its data When p blishing its data it o ldand used the information bus to publish its data. When publishing its data, it would
acquire a mutex, do writes to the bus, and release the mutex. If an interrupt caused
the information bus thread to be scheduled while this mutex was held, and if the
information bus thread then attempted to acquire this same mutex in order to retrieve

bli h d d t thi ld it t bl k th t iti til thpublished data, this would cause it to block on the mutex, waiting until the
meteorological thread released the mutex before it could continue. The spacecraft also
contained a communications task that ran with medium priority.

• Most of the time this combination worked fine. However, very infrequently it was
possible for an interrupt to occur that caused the (medium priority)
communications task to be scheduled during the short interval while the (high
priority) information bus thread was blocked waiting for the (low priority)priority) information bus thread was blocked waiting for the (low priority)
meteorological data thread. In this case, the long-running communications task,
having higher priority than the meteorological task, would prevent it from running,
consequently preventing the blocked information bus task from running. After some
time had passed a watchdog timer would go off notice that the data bus task had nottime had passed, a watchdog timer would go off, notice that the data bus task had not
been executed for some time, conclude that something had gone drastically wrong, and
initiate a total system reset.

• This scenario is a classic case of “unbounded” priority inversion.

What really happened on Mars?What really happened on Mars?
• How was this debugged? VxWorks can be run in a mode where it records a total trace

of all interesting system events, including context switches, uses of synchronization
objects, and interrupts. After the failure, JPL engineers spent hours and hours running
the system on the exact spacecraft replica in their lab with tracing turned on, attempting
to replicate the precise conditions under which they believed that the reset occurred. The
engineers finally reproduced a system reset on the replica. Analysis of the trace revealed g y p y p y
the priority inversion.

• How was the problem corrected? When created, a VxWorks mutex object accepts a
boolean parameter that indicates whether priority inheritance should be performed byboolean parameter that indicates whether priority inheritance should be performed by
the mutex. The mutex in question had been initialized with the parameter off; had it
been on, the low-priority meteorological thread would have inherited the priority of the
high-priority data bus thread blocked on it while it held the mutex, causing it be

h d l d ith hi h i it th th di i it i ti t k thscheduled with higher priority than the medium-priority communications task, thus
preventing the priority inversion. Leaving the "debugging" facilities in the system
saved the day. Without the ability to modify the system in the field, the problem
could not have been corrected.

• Finally, the engineer's initial analysis that "the data bus task executes very
frequently and is time-critical -- we shouldn't spend the extra time in it to perform
priority inheritance" was exactly wrong. It is precisely in such time critical andpriority inheritance was exactly wrong. It is precisely in such time critical and
important situations where correctness is essential, even at some additional
performance cost.

The importance of good theory/algorithmshe importance of good theory/algorithms

• The paper that first identified the priority
i i bl d d h l iinversion problem and proposed the solution
was:

• L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority , j , y y
Inheritance Protocols: An Approach to Real-Time
Synchronization. In IEEE Transactions on y
Computers, vol. 39, pp. 1175-1185, Sep. 1990.

Basic Priority Inheritance Protocol

• Rule 1: When a lower priority task blocks higher priority
tasks during its critical section it uses (inherits) the highesttasks during its critical section, it uses (inherits) the highest
priority of all the blocked tasks.

• Rule 2: When a task exits its critical section, it returns to
its normally assigned priorityits normally assigned priority

• Rule 3: Priority inheritance is transitiveRule 3: Priority inheritance is transitive.

Basic Priority Inheritance ProtocolBasic Priority Inheritance Protocol

L d

τ2:{...P(S)...V(S)...}
τ4:{...P(S)...V(S)...}

Legend
S Locked
Executing
Blocked B τ4:{...P(S)...V(S)...}Blocked B

Att t t l k S S U l k d

τ1(h)
S L k d

τ2

Ready
Attempts to lock S S Unlocked

B

S Locked

τ3

Ready
τ3: is INDIRECTLY BLOCKED by τ4

since τ4 inherits the priority of τ2

τ4(l)

S Locked S Unlocked

time

Properties of Basic Priority
Inheritance Protocol

• We shall assume that 1) a job does not self-suspending inside a critical
section; and 2) if nested semaphore are used, it will be properly nested.section; and 2) if nested semaphore are used, it will be properly nested.
Under PIP,
– A job can be blocked directly when it shares semaphores with lower

priority tasks It can be blocked by each of the lower priority task oncepriority tasks. It can be blocked by each of the lower priority task once
that shares one or more semaphores. The duration is the longest outmost
critical section.
A job can be blocked indirectly if a higher priority and a lower priority– A job can be blocked indirectly if a higher priority and a lower priority
share a semaphore. It occurs when the lower priority task inherits the
higher priority task’s priority.
The total blocking time ill be the s m of direct and indirect blocking– The total blocking time will be the sum of direct and indirect blocking.

• Forgetting the computation of indirect blocking is a common mistake.
Don’t make this mistake in your schedulability analyzer.

Chained Blocking under PIP
Legend

Chained Blocking under PIP
τ1:{ P(S1) P(S2) V(S2) V(S1) }S2 Locked

S1 Locked
Executing
Blocked

τ1:{...P(S1)...P(S2)...V(S2)...V(S1)...}
τ2:{...P(S1)...V(S1)...}
τ3:{...P(S2)...V(S2)...}B

\

BlockedBlocked { () () }B

Attempts to lock S2

S2 Locked S2 UnlockedS1 Locked
Attempts to lock S1

S1 Unlocked

τ1(h) B B

S2 Locked
S1 Unlocked

S1 Locked

τ2

S1 UnlockedS1 Locked

τ3(l)

S2 Locked S2 Unlocked

time

Deadlock Under PIPDeadlock Under PIP
Legend
S1 Locked
S2 Locked
Executing

τ1:{...P(S1)...P(S2)...V(S2)...V(S1)...}

Blocked
Executing
Blocked τ2:{...P(S2)...P(S1)...V(S1)...V(S2)...}B

1(h)

S1 Locked
Attempts to lock S2

B
τ1(h)

2(l)

S2 Locked Attempts to lock S1

B
τ2(l)

time

Blocking time under PIPBlocking time under PIP
• can be blocked only once by each lower priority tasky y p y

– Directly
– IndirectlyIndirectly

() rccsrcb
n

jiji = ∑()

jcs j

ij
jiji

- taskofsection criticaloutermost ofduration theis
1

,∑
+=

j
j

rc ji -by taskblock
-by taskblock no

 1
 0

,
⎩
⎨
⎧

=
jy⎩

ExampleExample

T1 = {.. P(A) .3. P(B) .2. V(B) .1. V(A) ..}

{ () () }T2 = {.. P(C) .2. V(C) ..}

T3 = {.. P(A) .1. P(B).2.V(B) .2. V(A) .. }

T4 = {..P(A).1.P(C).1.P(B) .3. V(B).1.V(C).1.V(A).. }

Directly
blocked by

Indirectly
blocked by

Totally
blocked by

T1
A

CS1=6

blocked by blocked by blocked by

T2 T3 T4 T2 T3 T4 T2 T3 T4

T1 N Y Y 5 7

T2

T3
B

b1=12

CS2=2

CS3=5
T2 * N Y * Y Y * 5 7

T3 * Y * Y * 7

T3

T4
C b2=12

b3=7

CS3 5

CS4=7

Priority Ceiling Protocoly g
• Definition 1: A priority ceiling is assigned to each semaphore, which is

equal to the highest priority job that may use this semaphore.
D fi iti 2 A i it ili i ti if th h i t d ith• Definition 2: A priority ceiling is active if the semaphore associated with
the ceiling is locked.

• Definition 3: For any job J, the current system priority ceiling is the max of
(all the active ceiling ceiling of semaphores hold by J)(all the active ceiling – ceiling of semaphores hold by J).

• Rule 1: Each job is scheduled by its assigned priorities.

• Rule 2: (Ceiling rule) A job cannot lock a semaphore unless its priority is
higher (not equal) than the current system priority ceiling – prevent
potential chained blocking! (Locking is allowed for the owner job of thepotential chained blocking! (Locking is allowed for the owner job of the
current system ceiling.)

• Rule 3: (Priority inheritance rule) If a job J blocks higher priority jobs via• Rule 3: (Priority inheritance rule) If a job J blocks higher priority jobs via
priority ceiling, J inherits the priority of the blocked high priority tasks.

• Rule 4: When a job exits its critical section it returns to its normal priority• Rule 4: When a job exits its critical section, it returns to its normal priority.

Blocked at Most Once (PCP)
Legend

Blocked at Most Once (PCP)

S1 Locked
S2 Locked
Executing
Blocked

τ1:{...P(S1)...P(S2)...V(S2)...V(S1)...}
τ2:{...P(S1)...V(S1)...}
τ3:{ P(S2) V(S2) }BBlockedBlocked τ3:{...P(S2)...V(S2)...}B

S2 Locked
S2 UnlockedS1 Locked

Attempts to lock S1
but can’t. Why?

S1 U l k d

τ1(h)

Attempts to lock S1
S2 Unlocked S1 Unlocked

S1 Locked

S1 Locked

B
τ3 inherit τ1’s priority

τ2

Attempts to lock S1
S1 Unlocked

B

S1 Locked

Attempts to lock S1, but BLOCKED by τ3 . Why?

τ3 inherit τ2’s priority

τ3(l)

S2 Locked S2 Unlocked
τ3 inherit τ2 s priority

time

Deadlock Avoidance: Using PCP
Legend

Deadlock Avoidance: Using PCP
Legend
S1 Locked
S2 Locked
Executing

τ1:{...P(S1)...P(S2)...V(S2)...V(S1)...}
2 { P(S2) P(S1) V(S1) V(S2) }BlockedBlocked τ2:{...P(S2)...P(S1)...V(S1)...V(S2)...}B

Attempts to lock S1 Locks S1
U l k S1

Locks S2 Unlocks S2

τ1(h)

but can’t. why?

B

Unlocks S1

If S1 were locked, deadlock would follow.

2(l)

Locks S2
Locks S1 Unlocks S1

Unlocks S2

,

τ2(l)

timeHold-and-Wait cannot occur!
Note: Task τ2 can still lock S1 since it owns the current system ceiling,
S1 is not locked by OTHER tasks

Properties of PCPProperties of PCP

• Under priority ceiling protocol,
– A job can be blocked by lower priority jobs at most once no matter

how many semaphores they share In addition jobs cannot behow many semaphores they share. In addition, jobs cannot be
deadlocked.

– There is indirect blocking under PCP. But a job can be blocked at
most once directly or indirectlymost once directly or indirectly.

– The blocking time of a job is the maximum of all the outermost
critical sections that could block the job directly or indirectly

• Failure to account for indirect blocking is a common
mistake and don’t make it in your exam or in yourmistake and don t make it in your exam or in your
schedulability analyzer.

Blocking time under PCPBlocking time under PCP
• can be blocked only oncey

– Direct block
– Priority inheritance blockPriority inheritance block
– Priority ceiling block

() rccsrcb jij

n

i max=()
jcs

rccsrcb

j

jijiji

- taskofsection criticaloutermost ofduration theis

max ,1+=

j
j

rc ji -by taskblock
-by taskblock no

 1
 0

,
⎩
⎨
⎧

=
⎩

ExampleExample
T1

T2
X

T1 = {.. P(X) .10. V(X) ..}

cs1=10

cs2=1

T3

T4
Y

T2 = {.. P(Y) .1. V(Y) ..}

T3 = {.. }

T4 = {..P(X).1.P(Z).2.V(Z).2.V(X).. }

cs3=0

cs4=5

T5

T6
Z

T5 = {..P(Y).4.V(Y).. }

T6 = {..P(Y).1.P(Z).2.V(Z).0.V(Y).. }
cs5=4

cs6=3

Directly blocked by Priority-inheritance
blocked by

Priority-ceiling blocked
by

2 3 4 6 2 3 4 6 2 3 4 6T2 T3 T4 T5 T6 T2 T3 T4 T5 T6 T2 T3 T4 T5 T6

T1 Y

T2 * Y Y * Y * Y

b1=5

b2 5T2 Y Y Y Y

T3 * * Y Y Y *

T4 * Y * Y Y * Y Y

b2=5

b3=5

b4=4

T5 * Y * Y * Y

b4 4

b5=3

Example (More detail analysis)Example (More detail analysis)
T1

T2
X

10

1T1 = {.. P(X) .10. V(X) ..}

T3

T4
Y

5

2
4

T2 = {.. P(Y) .1. V(Y) ..}

T3 = {.. }

T4 = {..P(X).1.P(Z).2.V(Z).2.V(X).. }

T5

T6
Z

4

3
2

T5 = {..P(Y).4.V(Y).. }

T6 = {..P(Y).1.P(Z).2.V(Z).0.V(Y).. }

Directly blocked by Priority-inheritance
blocked by

Priority-ceiling blocked
by

2 3 4 6 2 3 4 6 2 3 4 6T2 T3 T4 T5 T6 T2 T3 T4 T5 T6 T2 T3 T4 T5 T6

T1 5

T2 * 4 3 * 5 * 5

b1=5

b2 5T2 4 3 5 5

T3 * * 5 4 3 *

T4 * 2 * 4 3 * 4 3

b2=5

b3=5

b4=4

T5 * 3 * 3 * 3

b4 4

b5=3

Schedulability Analysis y y
considering Blocking

• Utilization bound check
() () niiU

p
rcbe

p
e

i

ii
i

j j

j ≤≤≤
+

+∑
−

=

1 allfor
1

1
Individual task check

System check () () max
11

nU
p
rcb

p
e

j

j
n

j

n

i i

i ≤+
==

∑
j

• Response time check
⎤⎡

() nide
p
rrcber i

i

j
j

j

i
iii ≤≤≤

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
++= ∑

−

=

1 allfor
1

1

