Chapter 5 Amorphous State

Structure of polymers

□ 화학적 구조

- 반복단위 구조 atomic structure
- 이성질체 isomers
- 연결 구조 sequence structure

□ 물리적 구조

- 한 사슬의 구조 single chain structure
- 사슬 모임의 구조 aggregation structure
 - » 무정형 구조 amorphous state
 - » 반결정성 구조 semicrystalline state

- amorphous vs. semicrystalline
- glass transition, aging, melting, crystallization

Amorphous vs Semicrystalline state

governing factors

- chain regularity \rightarrow crystallizability
- cooling rate → time for crystallization
- regular chain structure
 - » main-chain polymer (PE, nylon, PEster etc)
 - isotactic or syndiotactic vinyl polymers
 - » semicrystalline when slow-cooled; amorphous upon quenching

irregular chain structure

- » atactic vinyl polymers branched polymers
- » amorphous upon quenching; aged amorphous upon slow-cooling
- crystallizable when side group is small or crystallizable itself

1&2. Is amorphous completely disordered?

- Arguing partial order ~ parallelization
 - intuition ~ spaghetti ~ space-filing
 - high density (90% of crystal)
 - nodules in electron microscopy
 - Iateral (radial) order in ED and WAXS
- □ Arguing complete disorder ~ random
 - unperturbed dimension by SANS random coil
 - vanishing radial correlation in WAXS
 - little change in birefringence
 - rubber elasticity works
- > Order should be local, if any.
- Short-range order only: No long-range order
- See discussions p198-210 (only the results) Table 5.6, p214-216, and Fig 5.5

3. Single chain structure ~ Conformation

configuration - breaking single bond

isomers, copolymers, sequences
 conformation - rotation about single bond
 rotational isomers (conformer, actually)

Modeling of single chain

- from artificial to real chain
- freely jointed
- freely rotating
- restricted rotation
- excluded volume effect
- 'Random Coil'

A Polymer Chain

- □ *n* + 1 atoms
- n bonds (length /)
- \square *n* 1 bond angles (angle 180 θ)
- \square *n* 2 rotational angles (angle ϕ)

end-to-end distance, r

Freely Jointed Chain

Bond length only fixed
 Gaussian coil, 'ideal chain'
 mean square end-to-end distance

 a measure of chain dimension
 <r²> = n l² for FJC

characteristic ratio

a measure of chain stiffness

 $C_{\infty} = \langle r^2 \rangle / n l^2$ ~ definition \square Eqn (5.14) p212 $C_{\infty} = 1$ for FJC $C_{\infty} > 1$ for real chains

Freely Rotating Chain

Bond length and bond angle fixed
 reduced artificiality

$$= < r^2 > = n P^2 [(1 + \cos \theta) / (1 - \cos \theta)]$$

• For FRC with sp^3 atoms ($\theta = 70^\circ$) $\langle r^2 \rangle = 2 n l^2$ $C_{\infty} = \langle r^2 \rangle / n l^2 = 2$

¬ FRC is stiffer than FJC, if $\theta < 90^{\circ}$.

Chain with Restricted Rotations

- Bond length and bond angle fixed
- Not all rotational angles between $0^{\circ} < \phi < 360^{\circ}$ allowed.
- □ Only some discrete states allowed
 → rotational isomeric states (RIS)

Energy map for *n*-butane

Fig 2.11 p49

RIS Calculation 1

3 RIS (*t*, *g*⁺, *g*) for every bond (except for the first and the last) of the chain

For a chain with *n* bonds,
 (*n* - 2) φ gives 3ⁿ⁻² conformations.

Statistical weights for the bonds are determined by Boltzmann distribution (energy difference between t, g⁺, and g⁻; temperature).

> u = exp [-E / kT] u(t), u(g⁺), u(g⁻)

 $u(g^+) = \exp [-E(g^+)/kT]$ = $\exp [-0.5/0.8] = .53 \text{ at } 400 \text{ K}$

Energy map for *n*-butane

RIS Calculation 2

Interactions governing energy

- non-bonded interaction (dispersion)
- dipole interaction
- Intrinsic rotational potential
- Pairwise potential
 - 1st-order interaction
 - » 1-bond rotation ~ 3-bond interaction
 - » *t, g⁺, g*
 - 2nd-order interaction
 - » 2-bond rotation ~ 4-bond interaction
 - » *tt, tg⁺, tg*, *g⁺g⁺, gg*, *g⁺g*
 - » pentane interaction, short-range interaction
 - » Bond rotations should be considered pairwise.

RIS Calculation 3

By taking 2nd moment (average size) of all the conformations, the chain dimension is calculated.

• $C_{\infty} = \langle r^2 \rangle / n P^2 = 5 - 10$ For chains with restricted rotation • Table 5.7 p212

> Eqn (5.13) is totally wrong. 1. $\langle \cos \phi \rangle = \Sigma \cup \cos \phi / \Sigma \cup$ 2. 2^{nd} order interaction not considered

Compare with the experimental results (viscosity, light scattering, SANS, etc.) and adjust parameters

Excluded Volume Effect

Intrachain volume exclusion

- Iong-range interaction
- gives larger dimension

$$\Box < r^2 >_{\mathsf{EV}} = \alpha < r^2 >_0$$

- in good solvent, $\alpha > 1$
 - » Repulsion(p-p) > Repulsion(p-s)
- in poor solvent, $\alpha < 1$
 - » Repulsion(p-p) < Repulsion(p-s)</p>
- in theta (Θ) condition, $\alpha = 1 \sim \text{unperturbed} (_0)$
 - » Repulsion(p-p) = Repulsion(p-s)

$$\alpha^{5} - \alpha^{3} = C n^{\frac{1}{2}} \psi (1 - \theta/T)$$

Eqn (3.29) p84

Real Chain in Bulk – 'random coil'

In bulk amorphous state

- Repulsion(p-p, intra) = Repulsion(p-p, inter)
- unperturbed state ($\alpha = 1$)
- 'phantom' or 'ghost' chain

•
$$< r^2 > = < r^2 >_0 = r_{\theta}^2 = < r^2 >_{RIS}$$

- proposed by Flory; proved by SANS expt
- also in the melt state
- probably also in the semicrystalline state

crystal structure ~ conformation with the lowest energy

a = I (C + 1)/2 = Ie / 2 확인 Kuhn chain and Persistence length

- Kuhn chain = (Statistically) equivalent (freely jointed) chain
 Kuhn (chain) length, *I*_e
 - $n_{\rm e} I_{\rm e}^2 = \langle r^2 \rangle_0 = r_{\theta}^2 = C_{\infty} n P$
 - *n*_e*I*_e = *L* (contour length)
 - $I_{e} = r_{\theta}^{2} / L$ Eqn (5.15) p213
 - A measure of axial correlation length
 For DF / 9 / p = 0.1 p
 Fig 5.1 p201
 - For PE, *I*_e = 8 *I*, *n*_e = 0.1 *n*
- □ Persistence length, a
 - Projection of r to a bond
 - A measure of axial correlation length also
 - For PE, a~ 4 /

Examples of RIS Application 1

Polyethylene

<r²>_o = 6.8 n l² at 400 K
 σ = u(g⁺)/u(t) = 0.5, ω = u(g⁺g⁻)/u(tt) = 0.05
 P(t) = 0.62, P(g⁺) = P(g⁻) = 0.19
 temperature coefficient
 d[ln <r²>_o] / dT < 0
 preferred conformation
 all-*trans* (with the lowest energy)
 planar zigzag in crystal structure

Examples of RIS Application 2

Polyoxymethylene

- $< r^2 >_o = 8 n l^2$
 - $\sigma = 10, \omega = 0.05$
- d[ln <r²>_o] / dT > 0
- preferred conformation
 - $g^+g^+g^+...$ or $g^-g^-g^-...$
 - 2₁ helix in crystal structure

4. Macromolecular Dynamics

Motions in polymers

- Defomation in bond angle and length ~ elastic
- Change in conformation ~ segmental motion ~ viscoelastic
- Translational motion ~ viscous

Models for macromolecular dynamics

Rouse (– Bueche – Zimm) model III Fig 5.6

- Bead and spring
- Single chain, dilute solution

Reptation (de Gennes (– Doi – Edward)) model III Fig 5.7

- Effect of entanglements
- Chain in a tube III Fig 5.9
- Conc. solution, bulk
- η = Κ M^β
- Effect of branch III Fig 5.10