Chapter 9

Rubber Elasticity

Rubber

業 rubber (지우개?) = elastomer (탄성체, better term) 業 A rubber

stretches to 100's of %
← flexible chain (T_g < room temp)
snaps back to its original length instantly
← crosslinked (chemically)
✓ vulcanization (가황) □p432
✓ physically crosslinked in TPE
➤ TPE ~ thermoplastic elastomer □p483

Rubber is an entropy spring.

metal spring ~ energy-driven elasticity

internal energy, U

$$\partial U/\partial r = f$$
, force

F = U - TSFor ideal gas, $\partial U/\partial V = 0$ $P = T \partial S / \partial V$

rubber ~ entropy-driven elasticity

S

$$r_i = \langle r_i^2 \rangle^{\frac{1}{2}}$$

 $\int f = \partial (-T\Delta S)/\partial r$ \checkmark ideal rubber

Fig 9.7 p439

Rubber elasticity equations

Statistical Thermodynamics

- Helmoltz free energy, F = U T S (9.5)
- (retractive) force, f

 $f = \partial F / \partial r = \partial U / \partial r - T \partial S / \partial r = -kT \partial In\Omega / \partial r \quad \squareeqn (9.6), (9.20)$

- For one chain;
 - $\Omega \sim \#$ of conformations \rightarrow probability of a conformation
 - W(r) ~ probability finding the other end at betw r & r+dr \square Fig 9.9 W(r)dr = [Ω dr / $\int \Omega$ dr] 4π r² \square eqn (9.22)
 - Ω for Gaussian W(r) \square Fig 9.10

 $\partial \ln \Omega / \partial r = -2 \beta^2 r$ where $\beta = 3/(2 < r_0^2 >)$ log eqn (9.26)

f from eqn (9.20) & (9.26)

 $f = 3 kTr/\langle r_0^2 \rangle$ @eqn (9.27) $f \propto r \sim a spring$

Stat thermo 2

- For n chains;
 - deformation from r_i to r
 - r₀ → r for 1 chain, r_i → r for many chains practically, r₀ = r_i

$$<\mathbf{r}^{2}>/<\mathbf{r}_{i}^{2}> = (1/3)(\alpha_{x}^{2} + \alpha_{y}^{2} + \alpha_{z}^{2})$$
 @eqn (9.28)

work done, using eqn (9.27)

 $-W = \Delta F = [3nRT/\langle r_0^2 \rangle] \int r \, dr \, (\int \text{from } r_i \text{ to } r) \quad \square eqn (9.30)$

Integrating and using eqn (9.28)

 $\Delta F = (nRT/2) (\alpha_x^2 + \alpha_y^2 + \alpha_z^2 - 3)$ and eqn (9.31)

• When incompressible (v = 0.5), $\alpha_x \alpha_y \alpha_z = 1$, $\alpha_y = \alpha_z = 1/\alpha_x^{\nu_2} = 1/\alpha^{\nu_2}$ $\Delta F = (nRT/2) (\alpha^2 + 2/\alpha - 3)$ and eqn (9.33)

stress, σ

 $\sigma = \partial F / \partial \alpha = nRT (\alpha - 1/\alpha^2)$ $\square eqn (9.34)$

Equation of state (EOS) for rubber elasticity

extension ratio, $\alpha = 1 + \varepsilon$

Stat thermo 3

- constitutive eqn (구성방정식, relation betw σ and ε)
 - extension ratio, α

• $\alpha = 1 + \varepsilon$

- $\alpha^{-2} = (1 + \varepsilon)^{-2} = 1 2\varepsilon + \cdots \approx 1 2\varepsilon$ for small ε
- modulus, E from eqn (9.34)
 - $E = \sigma/\epsilon = [nRT (1 + \epsilon (1 2\epsilon)) / \epsilon = 3nRT$
- For rubber, v = 0.5
 - $G = E / 2(1 + v) = E/3 = nRT = (\rho RT/M_c)$
 - n ~ # of chains → # of chain fragments
 - M_c ~ mol wt betw Xlinks

 $G_N^0 = \rho RT/M_e$ for linear polymers $M_e \sim entanglement mol wt$ \square Fig 9.21 p464

Continuum mechanics eqn

Continuum Mechanics approach

Mooney-Rivlin eqn

 $\sigma = (2C_1 + 2C_2/\alpha) (\alpha - 1/\alpha^2) = G (\alpha - 1/\alpha^2)$ Compared eqn (9.49)

Comparison with experiments

f (σ)

Rubber becomes compressible, anisotropic, and strain-induced crystallizes.

Fig 9.5 p436