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Issues and prospects 
for confinement performance
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H-mode                        Reversed shear mode

Improved confinement suitable for the 
steady-state operation
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Non-monotonic current profile

Turbulence suppression

High pressure gradients

Large bootstrap current

Non-inductive current drive

Improved confinement suitable for the 
steady-state operation



t(s)

t(s)
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steady-state operation
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Steady-State Operation!

d/dt ~ 0
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Improved confinement suitable for the 
steady-state operation
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Improved confinement suitable for the 
steady-state operation
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Improved confinement suitable for the 
steady-state operation

Ti = 45keV
nτETi = 1.5x1021m-3keVs QDT

eq = 1.25
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• Plasma current diffusion into the core from the edge

Current and pressure profile control !

Current 
denstiy

q-profile

Plasma radius
edgecentre

Current profile control
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MSE, Magnetic Probe Measurements

Controller

j (r) from Analysis Methods

NBI

• Current density profile control at ASDEX Upgrade
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Current profile control
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• Modulation combinations of actuators (NBI, LH, ICRH) to infer 
the coefficients of the state space model of the slow loop.

• Two control loops, 4 actuators (NBI, LH, ICRH, PF)

• Real-time current and pressure profile control at JET

Current profile control
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• JT60-U: Real time qmin control with MSE diagnostics and LHCD

JT-60U

Current profile control
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β-limit and optimisation of the MHD stability

Fundamental elements 
for the βN-limit

1. Current profile
2. Pressure profile
3. Plasma shape
4. Stabilising wall
5. Resistive instability
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1. Current profile

Dependence of the achieved βN on li in DIII-D L-mode
discharge (open circles) compared to the calculated 
ballooning mode limit (solid circles)
High li is unfavourable for axisymmetric stability: high βN
operation not compatible with extreme shaping of the discharge

HW: Why?

Circular 
cross-section

E.J. Strait, Phy. Plasmas 1 1415 (1994)
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2. Pressure profile

Pressure profile determined by the α-particle heating 
with higher peakedness in ITER and DEMO
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3. Plasma shape

ITER designed to enable a high δ, 0.35-0.4

Why?
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4. Stabilising wall

Wall stabilising effect remarkable for RS plasmas
Stabilisation of RWM

- plasma rotation
- corrective magnetic field canceling the perturbed
magnetic field by the instability



• Resistive Wall Mode

• Saddle coils for direct stabilisation
- Different feedback schemes exist
- First results look promising
- New experiments with in-vessel
coils under way on DIII-D
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4. Stabilising wall
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• (Positive) surprises as we go to lower net momentum input…
• The rotation threshold may be very sensitive to ambient error field!
• But physics not yet clear (e.g. role of ni as highlighted by NSTX)

• Resistive Wall Mode

4. Stabilising wall
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5. Resistive instabilities

In quasi-SS discharges, βN is lower than 
the ideal MHD limit due to appearance of
resistive MHD instabilities (JT-60U)
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5. Resistive instabilities

Critical beta for m/n=2/1 NTM
- scales with ρi

*, ν*

T.C. Hender et al. Nucl. Fusion 44 788 (2004)
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6. Heat and Particle control using the ELMs

Type II ELMs
- confinement not degraded, relatively small impurity 
accumulation, lower heat load on divertor

- at high triangularity and in a high safety factor regime

HW: Other types of ELMs



Type II ELMs

• ELM behaviour constant over pulse
• Very fine scale activity - distinct ELMs almost indistinguishable
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• No sawteeth, good confinement, and βN ~ 3.5, Ti ~ Te, 
<ne>/nGW ~ 0.88, βNH89/q95

2 = 0.5, averaged over 3.6 s (~50τE)

fishbones (q=1)
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# 14521

Type II ELMs
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Pnbi (MW)

Small
ELMs
(type II)

Type II ELMs
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~ 18 MW / m2 ≤ 6 MW / m2

outer 
divertor

inner 
divertor
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Tokamak MHD operation region
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Confinement of energetic particles

Heating by energetic particles (alpha particles)
Ripple loss
Alfven eigenmodes (AE)

The slowing-down time
of energetic ions agrees 
well with classical estimate.

The diffusion coefficient of
energetic particles is 
consistent with the NC model.

- orbit averaging
- Small TAE due to small βα

HW: Issues on Ripple
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DT burning and burn control

Self-generated 
rotation?

Load following operation
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DT burning and burn control

• Intrinsic rotation

J. E. Rice et al, Nucl. Fusion 47 1618 (2007) 
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