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e Linear Time Invariant System

X = Ax+ Bu
y =Cx+ Du

Where A,B,C and D are constant matrix

e Linear Time Varying System

X =A(t)x+ B(t)u
y=C(t)x+D(t)u

e Nonlinear System

X = f(x(t), y(0), u(t),t)
y =h(x(t),u(t), y(t),1)
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Time Invariant System

e The Laplace Transform of Linear Time Invariant System
sX(s) — x(0) = AX(s) + BU(s)
sX(s)— AX(s) = x(0)+ BU(s)
(sl — A)X(s)=x(0)+BU(s)

SoX(8) = (sl = A)Hx(0) + (sl = A) 7 x(0) + (sl = A)'BU(s)

Transfer function is derived from zero-initial condition
Y(s)=[C(sl —A)"'B+DJU(s)

, thus the Transfer function G(s) is
-.G(s)=C(sl -A)'B+D

In general the Transfer function is expressed as follows

Y b,s™ +---+b
(S) — G(S) — 1 = m-+1 (m < n)
U (s) s"+as" +--
_ K, N K, L Gs+C,
S+p, S+p, S*+as+b
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System Response

e Transient response

- Response goes from the initial state to the final state

et Steady state response
-The manner in which the system output behaves as t approaches infinity

_Q()
let G(s)= P(s) then

P(s)=0 : the characteristic equation
Si :such that p(s) =0 is characteristic roots or poles
Q(s)=0 :suchthat s,  are called zeros

Y (s) =G(s)U (s)

=>» Partial Fraction ={ G(s) terms }+ U(s)
= Poles s,,S,,S,(real),o, £ jo,,0, * jo,
=>» Then the transient response becomes
>Ce* +Ce™ +----+De” sinwt +---
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Stability

e Stable

If !Ij]o x(t) = 0 with no zero initial condition

A linear time invariant system is “stable” if the output eventually comes back to equilibrium
state when the system is subject to an initial condition

e Equilibrium : x=0
With no disturbance and input, the output stays in the same state, which is called equilibrium.

e Stable condition
Re(s;) <0 forall S; , where S; is poles

e Critically stable

Oscillations of the output continue forever some Re(s;) =0

= Unstable
The output diverges without bound from its equilibrium state (when the system subjected to
an initial conditions)
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Stability

< Absolute Stability

Whether the system is stable or unstable

= Relative Stability

- Transient response
- Damped Oscillation

e Steady-state Error

The output does not exactly agree with the input
( Concerned with the Accuracy of the system)
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First Order System

) C(s) 1
e First Order System G(s) = R(:) ~Teil

1 .
When R(s) =5 s step input (r()=u(t) )
1 1 -T 1

Ts+1 s Ts+1 s
1 1 _L
c(t) =1-exp(—=t) Ct)==e T
T ® T
e(n | Wope le o) =1 — et "i‘_z:
1
NAT |
0.632 . -
b b 1
2 2 4 % % e = 2=31
@ g & E 8 541
l ¢ ¢ i’ ¥ . Figure4-2 a
0 T 2T T AT 5T + Exponential response curve.

for First Order system, 4
T : time constant of First order system the time constantis 7

For large T : SE0| =2lCt ]
For small T : S&0I| it Ch
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First Order System

1 : : .
When R(S)=S—2 ; unit ramp input, that is, r(t)=t
LONY
c(t)
T~ + Steady-state
i 4
i T
e nH=t !
I N
c(h)
2T |~
. T B | .
0 2T 4T 6r t
1 1 T? 1 T
c(s) = — = +———

Ts+1 s Ts+1 S° s

- c(t) _Te T 4t-T
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Second Order System

e Second Order System

C(s b

=9 65 =

R(S) s“+as+b
where a=2(w, b=w] 2

n

2420w S+ w?
Note that poles : —¢w, + @ 1-¢7j

Unit step response

for R(s)=% ; step input

) w? 1 1 S+ 2w,
S = P J——
s*+2w s+wl s s $°+2w S+l

—Cw,t "M — 2
Loty =1——2 sin(w,t +tan™ 1-¢ )
1-¢2 g
where o, =w,41-¢* : Damped natural frequency
()

» . Natural frequency

¢ : Damping ration /—ﬁ




Second Order System

c® For ¢t > t,, response jo )
o remains within this strip. )
i I _C(“' JWq
M, | ;\ . i 0.05 N
1 ! - or w1 -4 |
| i V77777 7 7z + 0.02 \ {/ﬁ _
4 : ' - 0 o
. :
‘i’/L// These points are specified. ___‘
0.5 f--—-p=t | : o [
1 i
; } Figure 4-13
i i Definition of the
{ ! angle B.

-~y

1. Risetimet, :10% -> 90%
5% > 95%

2. Max. Overshoot, MIO

3. Settling time, t, : 2% criterion t, =4/ ®,&
5% criterion t. =3/, ¢

4. Delay time, t; = 50%

5. Peak time, t,




Second Order System

e Step Response of Second Order System
C(s) _ o’

n

R(S) s*+2lw s+’

(1) Under damped :0< ¢ <1

C(s) @°

n

R(S) (s+<@,+ jo, )(s+{w, — joy)

w, =w,\J1-¢°

Step response R(s):%

c(t)=L"[C(s)]=1- eg‘“(coswdw sma)d}
I {cos(a)dtﬂan V1= D
J1-¢72 ¢
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Second Order System

e Step Response of Second Order System

(2) Critically damped : { =1
2
w
C(s) = L
©) (s+@,)'s

ct)=1-e ™ (1+ o,t)

(3) Critically damped : ¢ >1

2

a)n
C(s) = (s+§a)n +a)n\/ﬁ)(s+§a)n —a)n\/m)s
ct) =1+ 1 R 1 e
2@(§+\/ﬁ) 2 4'2_1(§_ ?2—1)
14 1 {eslt ~ esztj s, :(§+\/m)a)n

s <<[s
The effect of —S; on the response is much smaller than that of —S,
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Effect of Pole Locations

(1) First Order System

f6(=—T= 2
R sto Ts+1

Step response : R(s) :%

1
Ts+1
10T
_g_Ts+1

1 1

s s+(1/T) Im

Y(s)=

w |

1

y(t)=1-e 7 fort>0

Re

Pole: s=-c=-1/T
-1/T
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Effect of Pole Locations

(2) Second Order System

Y b

R Zrasthb where co, b=

2
n

s’ +2{w S+ @}
2

a

a, .
= n Poles : —¢w, +w J1-¢7 ]
(s+¢m,) +a)§(1—§2)
1 ALIm
Step response : R(s) =5 e 0, = o 1-C7
o’ 1 l
Y(S) = : 2 |
S“+20w,S+w; S | @,
1 s+, |
s S"+2lw s+ : 7  Re
e—é’a)nt ) o 1_4/2 —O
y(t)=1- sin| aw,t+tan =—lw,
N ’ ¢
¢ : damping ratio 0. cosn = o
@, : natural freq. £ =cos7

@y : damped freq.
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Pole Locations and Transient Response (Impulse)

Figure 3.13

Time functions associated
with points in the s-plane
(LHP, left half-plane; RHP,
right half-plane)

LHF
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»

k. Im(s)

UNSTABLE

i

RHP

.

.

Re(s)
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Effects of Zeros

1. The effect of zero near poles (cancel the pole response)

2 2 2
(s+1)(s+2)_s+1 S+2

2(s+11) 2 (0.1 , 09 j_0.18+1.64
11(s+1)(s+2) 1.a\s+1 s+2) s+1 s+2

Hl(s) =

Hz(s) -

e If we put the zero exactly at s=-1, this term will vanish completely
» The coefficient of the term (s+1) has been modified from 2 in H,(s) to 0.18 in H,(s)

In general, a zero near a pole reduces the amount of that term in the total response

coefficient €.(s)=(s—p;)F(s)|_,

zero near the pole P, F(s) will be small
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Effects of Zeros

2. Effect of zeros on the transient response
Two complex poles and one zero

(s/acw, ) +1 sy poles : S=-¢@, @, 1-¢" ]
H(s) = 2 p - 2a§ 2
(S/a)n) +2§(S/C()n)+1 S +2§(()n3+a)n Zero : S=—6¥é/0)n

a =1 : the value of the zero will be close to that of the real part of the poles

a >3 :very little effect on Mp
a <3 :increasing effect as « decreases below 3

Figure 3.24 8—— - Figure 3.25 2.0
Plots of the step response ‘ 7N ' Plot of overshoot M, as a 18
- " b f g { ot

of a beCOHU'Q_de system id \ function of normalized zero
il DR ¥ 8 S e g s location «. At o = 1, the g
AT | real part of the zero equals bt
| the real part of the poles 1.2
{ M, 1.0
' 0.8
| 0.6
0.4
0.2
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Effects of Zeros

2. Effect of zeros (L.T. Analysis)
Replacing S/@ with S
H(s) = ;slag“Jrl
S°+2¢s+1

B 1 N 1 S
$°+20s+1 al s*+2¢s+1

= Ho(s)*‘in(S)

hy () d
dtho (t)

. produce overshoot

VDOCU o,




Effects of Zeros

3. Nonminimum-phase zero

a<0 : the zero is in the RHP where s>0

; RHP zero
nonminimum-phase zero

Figure 3.26 1.8 Figure 3.27 15
Second-order step 16 Step responses y(z) of /»—\
responses y(z) of the ly H(s) a.second-on‘jer system 1.0 - —
transfer functions H (s), ' with a zero in the RHP: a /fm
Hy(s), and H;(s) 1.2 / nonminimum-phase system 0.5
LD : R H”m/
Ho(s) (1) 0

y() 0.8

0.6 = /
=[5

”:/I.\]
0.4 T Hy(s)

0.2 =10
0
0.2 G i 8 10
s /) 2
0 2 4 6 8 10 v = . -
e Time (sec)
lime (sec)
Figure 3.28 e

Response of an airplane's
dititude to an impulsive
glevator input

Altitude (

T'ime (sec) Vehicle Dynamics
& Control Laboratory




The Effect of an extra pole

= Effect on the Standard Second-order step response
1

H(s) =
© (s ago, +1)|(s/ @,)" +2¢ (s @) +1]

S =—-agw, a : big, far left poles

e DC gain of a system
. the ratio of the output of a system to its input (presumed constant)
after all transients have decayed

DC gain = Iirrgs-G(s)%: IingG(s)

Figure 3.29 1.2 - . ‘ s Figure 3.30 9
Step responses for several Pl N Normalized rise time for (LA\

third-order systems with several locations of an

[

T | } | additional pole y ‘ ‘J
0.8 | | (4] ‘ ‘
| J } | |‘

/ ! . 5

M) 06 f ‘ nfr - ~ £=10
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Effect of Poles-Zeros on Dynamic System

1. 2"d order system with no finite zeros

18 5%, ¢ =0.7
Rise time : t = a) Overshoot : M =116%, ¢ =05
o 16 3506, ¢ =03
Settling time 1t === o ={o,
(o)

2. A Zero in the LHP

Increase the overshoot
(if the zero is within a factor of 4 of the real part of the complex poles)

3. A Zero in the RHP (honminimum-phase zero)
- Depress the overshoot

- May cause the step response to start out in the wrong direction

4. An additional pole in the LHP

- Increase the rise time significantly if the extra pole is within a factor
of 4 of the real part of the complex poles
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