System Control

6-1. Electrical Motor

Professor Kyongsu Yi

©2009 VDCL

Vehicle Dynamics and Control Laboratory Seoul National University

Electrical Motor

Development of Integrated Vehicle Control System of "Fine-X" Which Realized Freer Movement.

Mitsuhisa Shida, Akira Matsui, Masayoshi Hoshino Integrated System Engineering Div.

Toyota Motor Corporation.

TOYOTA Freer Movement Control System

4Wheel independent drive 4wheel independent steering 4wheel independent braking By 'wheel-in-motor'

TOYOTA Freer Movement Control System

TOYOTA Freer Movement Control System

TOYOTA Freer Movement Control System for Auto-Parking

TOYOTA Freer Movement Control System for Auto-Parking

6WD6WS Vehicle

BLDC Wheel-in-Motor of 6WD6WS Vehicle

Sectional View of BLDC Motor

Constitution of DC Servomotor System

Motor drive system:

3 phase BLDC motor driver :

Constitution of DC Servomotor System

DC servo motor:

ex) Elevator structure:

Armature Control of DC Servomotors

Variables:

 R_a : armature resistance, Ω

 L_a : armature inductance, H

 i_a : armature current, A

 i_f : field current, A

 e_a : applied armature voltage, V

 e_b : back emf, V

 θ : angular displacement of the motor shaft, rad

T: torque developed by the motor, N-m

J: equivalent moment of inertia of the motor and load referred to the motor shaft, kg-m²

b: equivalent viscous-friction coefficient of the motor and load referred to the motor shaft, N-m/rad/s

Armature Control of DC Servomotors

The torque of motor :

$$T = Ki_a$$

 $T = Ki_a$ K: motor-torque constant

For a constant flux, the induced voltage : $e_b = K_b \frac{d\theta}{dt}$ K_b : back emf constant

$$e_b = K_b \frac{d\theta}{dt}$$

Armature circuit D.E:

$$L_a \frac{di_a}{dt} + R_a i_a + e_b = e_a$$

Inertia and friction:

$$J\frac{d^2\theta}{dt^2} + b\frac{d\theta}{dt} = T = Ki_a$$

Armature Control of DC Servomotors

Laplace transforms of equations:

$$e_{b} = K_{b} \frac{d\theta}{dt} \qquad K_{b} s \Theta(s) = E_{b}(s)$$

$$L_{a} \frac{di_{a}}{dt} + R_{a} i_{a} + e_{b} = e_{a} \qquad (L_{a} s + R_{a}) I_{a}(s) + E_{b}(s) = E_{a}(s)$$

$$J \frac{d^{2} \theta}{dt^{2}} + b \frac{d\theta}{dt} = T = K i_{a} \qquad (J s^{2} + b s) \Theta(s) = T(s) = K I_{a}(s)$$

$$T.F = \frac{\Theta(s)}{E_{a}(s)} = \frac{K}{s(R_{a} J s + R_{a} b + K K_{b})} = \frac{\frac{K}{R_{a} J}}{s\left(s + \frac{R_{a} b + K K_{b}}{R_{a} J}\right)}$$

$$= \frac{K_{m}}{s(T_{m} s + 1)} \qquad K_{m} = K / (R_{a} b + K K_{b}) = motor \ gain \ constant$$

$$T_{m} = R_{a} J / (R_{a} b + K K_{b}) = motor \ time \ constant$$

Example of a DC Servomotor System

ex) servo-motor system

 R_a : armature resistance, Ω

 i_a : armature current, A

 i_f : field current, A

 e_a : applied armature voltage, V

 e_h : back emf, V

 θ_1 : angular displacement of the motor shaft, rad

 θ_2 : angular displacement of the load shaft, rad

T: torque developed by the motor, N-m

 J_1 : equivalent moment of inertia of the motor, kg-m²

 J_2 : equivalent moment of inertia of the load, kg-m²

The torque of motor : $T = Ki_a$

For a constant flux, the induced voltage : $e_b = K_b \frac{d\theta}{dt}$ K_b : back emf constant

Example of a DC Servomotor System

Armature circuit D.E: $R_a i_a + e_b = e_a$ Inertia and friction: $J_{1eq} = J_1 + \left(\frac{n_1}{n_2}\right)^2 J_2$

Laplace transforms of these equations:

$$K_b s\Theta(s) = E_b(s), \quad (L_a s + R_a)I_a(s) + E_b(s) = E_a(s), \quad (J s^2 + b s)\Theta(s) = T(s) = KI_a(s)$$

$$T.F = \frac{\Theta(s)}{E_a(s)} = \frac{K}{s(R_a J s + R_a b + K K_b)} = \frac{\frac{K}{R_a J}}{s\left(s + \frac{R_a b + K K_b}{R_a J}\right)}$$
$$= \frac{K_m}{s(T_m s + 1)}$$