7. Excavation design in massive elastic rock

7.1 General principles of excavation design

- Mining excavation
 - 1) Service openings
 - Mine access, ore haulage drive, airway, crusher chambers...
 - Duty life: mining life of the orebody
 - 2) Production openings
 - Ore sources, stopes, drill headings, stope access...
 - Duty life: life of stope (as short as a few months)
- Excavation design in massive elastic rock
 - The simplest design problem in mining rock mechanics

7.1 General principles of excavation design

- Two points in mine design
 - Existence of an extensive damage zone or failure rock near the boundary of the opening is common even in successful mining practice
 - Basic mining design objective is to avoid large, uncontrolled displacement of rock in the excavation boundary.
- Logical framework for mine excavation design in massive rock
 Refer to Fig 7.2

- Zone of influence
 - A domain of significant disturbance of the pre-mining stress field by an excavation
 - Depends on excavation shape and pre-mining stresses
- Stress distribution around a circular hole (Kirsch equations)
 - General case:

- Hydrostatic stress case:

 $\sigma_{rr} = p \left(1 - \frac{a^2}{r^2} \right)$ $\sigma_{\theta\theta} = p \left(1 + \frac{a^2}{r^2} \right)$ $\sigma_{r\theta} = 0$

- 1) Openings of the same radius
- $_D_{I,II} \ge 6a$

(within ±5% from the field stresses)

2) Openings of the different radius

- Genera rule: openings lying outside one another's zones of influence can be designed by ignoring the presence of all others
- Boundary stresses around II can be obtained by calculating the state of stress at the center of II which is adopted as the far-field stresses in the Kirsch equations, prior to its excavation.

- 3) Elliptic opening
- General shapes of openings can be represented by ellipses inscribed in the opening cross sections.
- Zone of influence of an elliptic excavation:

$$W_{I} = H \left[A\alpha \left| q \left(q+2 \right) - K \left(3+2q \right) \right| \right]^{1/2}$$

or

$$W_{I} = H\left[\alpha\left(A\left(K+q^{2}\right)+Kq^{2}\right)\right]^{1/2}$$

$$H_{I} = H \left[A\alpha \left| K \left(1 + 2q \right) - q \left(3q + 2 \right) \right| \right]^{1/2}$$

or

$$H_{I} = H \left[\alpha \left(A \left(K + q^{2} \right) + 1 \right) \right]^{1/2}$$

$$q = W/H, \quad A = 100/2c,$$

$$\alpha = 1, \text{ if } K < 1, \text{ and } \alpha = 1/K, \text{ if } K > 1$$

- Elastic analysis for the excavations with discontinuities
 - In some cases, provides a perfectly valid basis for design
 - or a basis for judgment of engineering significance of a discontinuity.
- Basic assumption of discontinuities
 - Zero tensile strength
 - Non-dilatant in shear
 - Shear strength follows

$$\tau = \sigma_n \tan \phi$$

- Case 1: Horizontal discontinuity passing through the opening center
 - $\sigma_{r\theta} = 0$ for all r at $\theta = 0$: no slip, σ_{rr} and $\sigma_{\theta\theta}$ are principal stresses.
 - The plane of weakness (discontinuity) has no effect on the elastic stress distribution

$$\sigma_{rr} = \frac{p}{2} \left[(1+K) \left(1 - \frac{a^2}{r^2} \right) - (1-K) \left(1 - 4\frac{a^2}{r^2} + 3\frac{a^4}{r^4} \right) \cos 2\theta \right]$$

$$\sigma_{\theta\theta} = \frac{p}{2} \left[(1+K) \left(1 + \frac{a^2}{r^2} \right) + (1-K) \left(1 + 3\frac{a^4}{r^4} \right) \cos 2\theta \right]$$

$$\sigma_{r\theta} = \frac{p}{2} (1-K) \left(1 + 2\frac{a^2}{r^2} - 3\frac{a^4}{r^4} \right) \sin 2\theta$$

Case 2: Vertical discontinuity passing through the opening center 1) At $K \ge \frac{1}{3}$ - $\sigma_{r\theta} = 0$ for all *r* at $\theta = 90^{\circ}$: no slip, σ_{rr} and $\sigma_{\theta\theta}$ are principal stresses. 2) At $K < \frac{1}{3}$ - De-stressed zone from Eq.6.24 ^(a) $\sigma_{B} = p\left(K - 1 + \frac{2K}{q}\right) = 0$ plane of weakness de-stressed zone $\begin{array}{l} Kp\\ (K \geq \frac{1}{3}) \end{array}$ Кр (K < ¹/₃) or $q = \frac{2K}{1-K} \left(q = \frac{W}{H} = \frac{2a}{H}\right)$ $\Delta h = a \left(\frac{1 - 3K}{2K} \right)$

- Case 3: Horizontal discontinuity passing through the opening
 - Normal & shear stresses at the intersections on boundary $\sigma_n = \sigma_{\theta\theta} \cos^2 \theta$

$$\tau = \sigma_{\theta\theta} \sin \theta \cos \theta$$

 $\tau = \sigma_n \tan \phi \quad (\text{slip occurs}) \qquad (a) \qquad \downarrow^{p} \downarrow \qquad (b)$ $\rightarrow \sigma_{\theta\theta} \sin \theta \cos \theta = \sigma_{\theta\theta} \cos^2 \theta \tan \phi \qquad \downarrow^{p} \downarrow \qquad (b)$ $\tan \theta = \tan \phi \quad \text{or} \quad \sigma_{\theta\theta} \frac{\sin(\theta - \phi)}{\cos \phi} = 0 \qquad \downarrow^{q} \downarrow \qquad \downarrow^{p} \downarrow \qquad (c)$ $= \text{Slip occurs when } \theta = \phi \text{ or } \sigma_{\theta\theta} = 0 \qquad \downarrow^{\pi} \frac{\pi}{2} - \theta$ = Intersection regions are either de-stressed or at low confining stress

Case 4: Arbitrary discontinuity passing through the opening center
Normal & shear stresses on the weak plane

• Case 5: Horizontal discontinuity not intersecting the opening

• Elliptic opening

$$\sigma_{A} = p(1 - K + 2q) = p\left(1 - K + \sqrt{\frac{2W}{\rho_{A}}}\right)$$
$$\sigma_{B} = p\left(K - 1 + \frac{2K}{q}\right) = p\left(K - 1 + K\sqrt{\frac{2W}{\rho_{B}}}\right) - \frac{1}{2}$$

- q = W/H
- ρ : radius of curvature

- $\frac{1}{\rho} = \frac{x'y'' x''y'}{(x'^2 + y'^2)^{3/2}}$: curvature of an ellipse
- Larger curvature makes higher stress concentration

- Ovaloidal opening
 - Applying the boundary stress of an ellipse inscribed in the ovaloid

$$\sigma_{A} = p \left(1 - 0.5 + \sqrt{\frac{2 \times 3H}{H/2}} \right) = 3.96 p$$
$$\sigma_{B} = p \left(0.5 - 1 + 0.5 \sqrt{\frac{2H}{(3H)^{2}/2H}} \right) = -0.17 p$$

- By B.E.M: $\sigma_A = 3.60p$, $\sigma_B = -0.15p$

- Square opening with rounded corners
 - Applying the boundary stress of an ellipse whose curvature is the same as those of the rounded corners

$$- \sigma_{A} = p \left(1 - 1 + \left[\frac{2B(\sqrt{2} - 0.4(\sqrt{2} - 1))}{0.2B} \right]^{1/2} \right)$$

$$= 3.53p$$

$$- \text{ By B.E.M: } \sigma_{A} = 3.14p$$

$$- \text{ Boundary stress is dominated}$$

$$by the local geometry:$$

$$St Vergent's Principle$$

Six washing

St Venant's Principle

- Effect of changing the relative dimensions
 - Sidewall stress $2.5p \rightarrow 1.7p$
 - The maximum boundary stress can be reduced if the opening dimension is increased in the direction of the major principal stress.

- Effect of local geometry of an opening
 - Width/height = 2/3
 - A, B, C are highly stressed due to their high level of curvature.
 - D is at low state of stress (tensile failure)
 - Rock mass in compression may behave as a stable continuum while in a de-stressed state, small loads can cause large displacement of rock units.

- Estimation of the extent of fracture zones provides a basis for prediction of rock mass performance, modification of excavation design, or assessing support and reinforcement requirement.
- The solution procedure suggested here examines only the initial, linear component of the problem. For mining engineering purposes, the suggested procedure is usually adequate.
- Extent of boundary failure
 - Applicable compressive strength at boundary is σ_{ci} .
 - Tensile strength of rock mass is taken to be zero.

height of the opening can be used.

- Extent of failure zones in rock mass
 - Close to the boundary (within a radius): the constant deviator stress criterion is useful.
 - Example of an circular opening in Lac du Bonnet granite: the maximum deviator stress contour of 75 MPa predicted well the failure domain.

- General cases including interior zones of rock mass: Hoek-Brown criterion with σ_{cd}
- 1) Principal stress contour method
 - a. Calculate various values of (σ_3, σ_1^f)
 - b. Contour plots of σ_1 and σ_3 are superimposed.
 - c. Find the intersections of σ_1 and σ_3 isobars satisfying the failure criterion.

- 2) Direct comparison with the failure criterion
 - a. Calculate the state of stress (principal stress)
 - b. Compare with the failure criterion.
 - c. Display failure locations throughout the rock mass.

7.6 Support and reinforcement of massive rock

(b)

(1)

20 MP:

- Explanation of the effect of support (1) Elastic rock medium
 - Stress before support:

$$\sigma_A = 170.2 \text{ MPa}, \quad \sigma_B = -8.0 \text{ MPa}$$

- Stress after support

$$\sigma_{A1} = \sigma_{A2} + \sigma_{A3}$$

= 1+19 $\left(1 - \frac{8}{19} + 8\right)$ = 161.0 MPa

$$\sigma_{B1} = \sigma_{B2} + \sigma_{B3}$$

= 0 + 19 $\left(\frac{8}{19} - 1 + \frac{2 \times 8}{19} \times \frac{1}{4}\right) = -7.0$ MPa

8 MPa

W/H = 4

20 MPa

- Support pressure does not significantly modify the elastic distribution around an underground opening

7.6 Support and reinforcement of massive rock

(2) Elastic rock mass with a failed rock annulus

- Rock mass strength is assumed to follow Coulomb's criterion:

$$\sigma_{1} = \sigma_{3} \frac{1 + \sin \phi}{1 - \sin \phi} + \frac{2c \cos \phi}{1 - \sin \phi} \rightarrow \sigma_{1} = b \sigma_{3} + C_{0} : \text{Rock Mass}$$
$$\sigma_{1} = \sigma_{3} \frac{1 + \sin \phi^{f}}{1 - \sin \phi^{f}} \rightarrow \sigma_{1} = d \sigma_{3} : \text{Fractured rock Mass}$$

- Equilibrium equations in fractured rock (c.f. Sec.2.11)

7.6 Support and reinforcement of massive rock

- Stress in elastic zone (c.f. Eqn.6.8)

$$\sigma_{\theta\theta} = p \left(1 + \frac{r_e^2}{r^2} \right) - p_1 \frac{r_e^2}{r^2}, \quad \sigma_{rr} = p \left(1 - \frac{r_e^2}{r^2} \right) + p_1 \frac{r_e^2}{r^2}$$

- At the inner boundary of the elastic zone $(r = r_e)$

$$\sigma_{\theta\theta} = 2p - p_1, \quad \sigma_{rr} = p_1$$

- Applying to Coulomb's criterion ($\sigma_1 = b\sigma_3 + C_0$)

$$2p - p_1 = bp_1 + C_0 \quad \to \quad p_1 = \frac{2p - C_0}{1 + b}$$
$$\to r_e = a \left[\frac{2p - C_0}{(1 + b)p_i} \right]^{1/(d - 1)}$$

- At
$$\phi = \phi^f = 35^\circ$$
, $p_i = 0.05 p$, $C_0 = 0.5 p$
 $\rightarrow r_e = 1.99a$