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Chapter 5 Flow of an Incompressible Ideal Fluid 

 

5.1 Euler’s Equation 

5.2 Bernoulli’s Equation 

5.3 The One-Dimensional Assumption for Stream tube of Finite Cross Section 

5.4 Application of Bernoulli’s Equation 

5.5 The Work-Energy Equation 

5.6 Euler’s Equation for Two-Dimensional Flow 

5.7 Bernoulli’s Equation for Two-Dimensional Flow 

5.8 Stream Function and Velocity Potential 

 

 

Objectives: 

• Apply Newton’s 2nd law to derive equation of motion, Euler’s equation 

• Introduce the important Bernoulli and work-energy equations, which permit us to 

predict pressures and velocities in a flowfield 

• Derive Bernoulli equation and more general work-energy equation based on a control 

volume analysis 
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우리가 물이 되어 만난다면 

가문 어느 집에선들 좋아하지 않으랴 

우리가 키 큰 나무와 함께 서서 

우르르 우르르 비 오는 소리로 흐른다면 

 

흐르고 흘러서 저물녘엔 

저 혼자 깊어지는 강물에 누워 

죽은 나무 뿌리를 적시기도 한다면 

... 

 

만리 밖에서 기다리는 그대여  

저 불 지난 뒤에 

흐르는 물로 만나자 

 

 

강은교 <우리가 물이 되어> 중에서 
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▪ What is ideal fluid? 

- An ideal fluid is a fluid assumed to be inviscid. 

- In such a fluid there are no frictional 

- There is no cause for eddy formation or energy dissipation due to friction.  

effects between moving fluid layers or between 

these layers and boundary walls. 

- Thus, this motion is analogous to the motion of a solid body on a frictionless plane. 

[Cf] The real fluid – viscous fluid 

 

▪ Why we first deal with the flow of ideal fluid instead of real fluid?  

- Under the assumption of frictionless motion, equations are considerably simplified 

and more easily assimilated by the beginner in the field. 

- These simplified equations allow solution of engineering problems to accuracy 

entirely adequate for practical use in many cases. 

- The frictionless assumption gives good results in real situations where the actual 

effects of friction are small. 

[Ex] the lift on a wing 

 

▪ Incompressible fluid; 0
( , , , )t x y z

ρ∂
=

∂
 

  ~ constant density 

  ~ negligibly small changes of pressure and temperature 

  ~ thermodynamic effects are disregarded 
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5.1 Euler's Equation 

   

 

Fig. 5.1 

 

Euler (1750) first applied Newton's 2nd law to the motion of fluid particles. 

Consider a streamline and select a small cylindrical fluid system 

 

 F ma∑ =




 

 (i) ( ) sindF pdA p dp dA dW θ= − + −      

  
dzdp dA gdAds
ds

ρ= − −  

  dp dA g dAdzρ= − −  

 

 (ii) dm dAdsρ=  (density × volume) 

 

 (iii) 
dV dV ds dVa V
dt ds dt ds

= = =  

g 

dWsinθ 

sin dz
ds

θ =  

Pressure force Gravitational 
force 
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 ( ) dVdpdA gdAdz dsdA V
ds

ρ ρ∴− − =  

 

Dividing by dAρ gives the one-dimensional Euler's equation 

 0dp VdV gdz
ρ

+ + =
 

 

Divide by g
 

 
1 0dp VdV dz
g

+ + =
γ

 

 
2

0
2

dp Vd dz
g

 
+ + = γ  

    

 

For incompressible fluid flow, 

 
2

0
2

p Vd z
g

 
+ + = γ   

 

→ 1-D Euler's equation (Eq. of motion) 

  

2( ) 2d V V dV=  
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5.2 Bernoulli's Equation 

 For incompressible fluid flow, integrating 1-D Euler's equation yields  

 
2

const.
2

p V z H
gγ

+ + = =           (5.1)
 

 

where H = total head
 

→ Bernoulli equation   

  

Between two points on the streamline, (5.1) gives 

 
2 2

1 1 2 2
1 22 2

p V p Vz z
g gγ γ

+ + = + +  

 
p
γ

= pressure head   
2 2

2 3
kg m/s kg m/s = m

m m
⋅ ⋅

 

 z = potential head (elevation head), m 

 
2

2
V

g
= velocity head  

2(m s) =m
m s

  

 

 

Pitot tube 

manometer 

Henri de Pitot 
(1695~1771) 
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Bernoulli Family: 
Jacob 
Johann –  Nikolaus 
  Daniel 

Bernoulli Family: 
Jacob 
Johann - Nikolaus 
  Daniel 
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5.3 The One-Dimensional Assumption for Streamtubes of Finite Cross Section  

 

Bernoulli Eq. is valid for a single streamline or infinitesimal streamtube across which 

variation of ,p V  and z  is negligible. 

This equation can also be applied to large stream tubes such as pipes, canals.  

 

 

Fig. 5.3 

 

Consider a cross section of large flow through which all streamlines are precisely straight and 

parallel. 

 

i) Forces, normal to the streamlines, on the element of fluid are in equilibrium 

  → acceleration toward the boundary is zero. 

 0F∑ =


 

 1 2( ) cos 0p p ds hdsγ α− − =  

  

       1 2 2 1( ) ( )p p ds z z dsγ∴ − = −  

W 

2 1cos ( ) /z z hα = −  
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 1 2
1 2

p pz z
γ γ

+ = +             (2.6) 

→ the same result as that in Ch. 2 

→ quantity 
pz
γ

 
+ 

 
 is constant over the flow cross section normal to the streamlines  

  when they are straight and parallel.  

  → This is often called a hydrostatic pressure distribution
pz
γ

+ ( = const. for fluid at rest). 

 

ii) In ideal fluid flows, distribution of velocity over a cross section of a flow containing 

straight and parallel streamlines is uniform

V

 because of the absence of friction. 

  → All fluid particles pass a given cross section at the same velocity, (average velocity) 

 1 2V V=       

 

Combine (i) and (ii) 

 
2 2

1 1 2 2
1 22 2

p V p Vz z
g gγ γ

+ + = + +  

 

→ Bernoulli equation can be extended from infinitesimal to the finite streamtube. 

→ Total head H is the same for every streamline in the streamtube. 

→ Bernoulli equation of single streamline may be extended to apply to 2- and 3-dimensional 

flows.  

  



                             Ch. 5 Flow of an Incompressible Ideal Fluid 
 

5-10 
 

[IP 5.1] p. 129 

Water is flowing through a section of cylindrical pipe. 35Cp = kPa, 3 39.8 10 N/mγ = ×  

 

 

 

 

 

 

[Sol] 

 A B C
A B C

p p pz z z
γ γ γ

+ = + = +  

 3 3 1.2( ) 35 10 (9.8 10 ) cos30 29.9 kPa
2A C C Ap p z zγ  = + − = × − × = 

 
  

 3 3 1.2( ) 35 10 (9.8 10 ) cos30 40.1 kPa
2B C C Bp p z zγ  = + − = × + × = 

 
  

 

→ The hydraulic grade line is 
3

3

35 10 3.57 m
9.8 10

Cp
γ

×
= =

×
 above point C .  

  

3.57 mCp
γ

=  

2

2
CV
g

 

Datum 
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5.4 Applications of Bernoulli's Equation 

• Bernoulli's equation 

 
2

const.
2

p V z H
gγ

+ + = =  

→ where velocity is high, pressure is low. 

 

• Torricelli's theorem (1643) 

  ~ special case of the Bernoulli equation. 

 

 
 
 

 Apply Bernoulli equation to points 1 and 2 

2 2
1 1 2 2

1 22 2
p V p Vz z

g gγ γ
+ + = + +  

 1 0V ≅  (for very large reservoir); 1 0atmp p= =  

 
2

2 2
1 2 2

V pz z
g γ

= + +  

  2
2 2

1 2 2
p Vz z h

gγ
− = = +       (a)

 

reservoir 

1 

Datum 
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 Apply Newton's 2nd law in the vertical direction at section 2 

 F ma∑ =  

   ( )dF p dp dA pdA dAdz dpdA dAdzγ γ= − + + − = − −  

   dm dAdzρ=  

   a g= −  

 ( )dAdp dAdz dAdz gγ ρ∴ − − = −  

   dp dz dzγ γ− − = −  

 0dp∴ =  

→ no pressure gradient across the jet at section 2. 

→ 2A B Cp p p p= = =  

 0 (gage)A atmp p∴ = =                  (b) 

 

Thus, combining (a) and (b) gives 

 
2

2

2
Vh

g
=    

2 2V gh→ =  

~ equal to solid body falling from rest through a height h . 

 

 

 

 

 



                             Ch. 5 Flow of an Incompressible Ideal Fluid 
 

5-13 
 

[IP 5.2] p.131 

 

Fig. Problem 5.2 

 

Find:  1 2 3 4, , ,p p p p  and eleveation at point 6 

Sol] 

(i)Bernoulli's Eq. between ⓞ&⑤  

2 2
0 0 5 5

0 52 2
p V p Vz z

g gγ γ
+ + = + +  

 0 5 00, 0atmp p p V= = = =
 

2
590 60

2
V

g
→ = +

 

5 24.3 m/sV =
 

 

Calculate Q using Eq. (4.4) 
 

 2 324.3 (0.125) 0.3 m /s
4

Q AV π
= = × =          

Reservoir 

0 

-1.58 m 
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(ii) Apply Continuity equation

2

1 1 5 5 1 5
125
300

AV Q AV V V = = ∴ =  
 

, Eq. (4.5) 

         (4.5) 

 ( )
4 422

51 125 125 30 0.9 m
2 300 2 300

VV
g g

   ∴ = = =   
     

            
1 3 40.9(2 9.8) 4.2 m/sV V V= × = = =

 

( )
4 422

52 125 125 30 4.58m
2 200 2 200

VV
g g

   = = =   
   

, 

           2 4.58(2 9.8) 9.5 m/sV = × =  

 

 (iii) B. E. ⓞ & ① 

 2
1 190 72

2
p V

gγ
= + +  of H2O ← head 

  1 18 0.9 17.1 m
w

p
γ

∴ = − =  of H2O ← head
 

 3
1 17.1(9.8 10 ) 167.5 kPap = × =          (5.1) 

 

 (iv) B. E. ⓞ & ② 

 2 290 87 4.58 1.58 mp p
γ γ

= + + ∴ = −  

 
3

3
2

15.48 101.58(9.8 10 ) 15.48 kPa 116 mmHg
133.3

p − ×
= − × = − = =  vacuum 

  → below15.48 kPa atmp  

Continuity 
equation 
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[Re]   2 5 21 bar=1000 mb(millibar)=100 kPa=100 kN m =10 N m  

       
5760 mmHg 101.325 kPa(10 pascal) 1013 mb 29.92 in. Hgatmp = = =  

 21 mmHg 133.3 Pa 133.3 N/m= =  

 

(v) B. E. ⓞ & ③ 

 390 0.9 78p
γ

= + +  

 3 12 0.9 11.1mp
γ

∴ = − =   

3 108.8 kPap =         (5.1) 

 

(vi)  B. E. ⓞ & ④ 

4 31 0.9 30.1mp
γ

= − =    

4 295.0p kPa=         (5.1) 

 

(vii) Velocity at the top of the trajectory  

→ 6 24.3 cos30 21.0 m/sV = =  

 

Apply B. E. ⓞ & ⑥ 

 
221.0. 90 67.5m

2
El

g
∴ = − =  
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 Point 0 Point 1 Point 2 Point 3 Point 4 

Pressure, kPa 0 167.5 -15.8 108.7 294.9 

Velocity, m/s 0 4.22 4.61 4.22 4.22 

Elevation, m 90 72 87 78 59 

 

 

▪ Cavitation 

 As velocity or potential head increase, the pressure within a flowing fluid drops. 

 ~ Pressure does not drop below the absolute zero of pressure.  

 3( 10 millibar 100 kPa 0 100 kPa)atm abs gagep p p≈ = ∴ = ⇒ = −  

 ~ Actually, in liquids the absolute pressure can drop only to the vapor pressure

vp

 of the liquid.  
  

For water,  

vp  

1.23kPa @ 10 C 

1.70kPa @ 15 C 

2.34kPa @ 20 C 
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[IP 5.3] p.134 

Bp = 96.5 kPa = barometric pressure.  

What diameter of constriction can be expected to produce incipient cavitation at the throat of 

the constriction? 

 

Water at 40 C  

 39.73 kN/mγ = ; 7.38 kPavp =  

 
3 2

3 3

7.38 10 N/m 0.76 m
9.73 10 N/m

vp
γ

×
= =

×
 

 
3 2

3 3

96.5 10 N/m 9.92 m
9.73 10 N/m

atmB pp
γ γ

×
= = =

×
 

 

 (i) Bernoulli Eq. between ① and © 

 
22

1 1
1 2 2

c c
c

p Vp Vz z
g gγ γ

+ + = + +  

 1 10, ,B c vV p p p p≈ = =   

1 

2 

11 m 

3 m 

150 mm 

Incipient 
cavitation 
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2

11 9.92 0 3 0.76
2

cV
g

∴ + + = + +  

 
2

17.16 m 18.35 m s
2

c
c

V V
g

= → =  

 

 (ii) Bernoulli Eq. between ① and ② 

 
2 2

1 1 2 2
1 22 2

p V p Vz z
g gγ γ

+ + = + +
 

1 1 20, BV p p p≈ = =  

 
2

211 9.92 0 0 9.92
2
V

g
+ + = + +  

 2 14.69 m sV =  

  

(iii) Continuity

2 2 c cQ A V AV= =

 between ② and © 

  

 2 2(0.15) (14.69) (18.35)
4 4 cdπ π

=    

0.134 m=134 mmcd∴ =  

 

[Cp] For incipient cavitation, 

 critical gage pressure at point C is 

 ) (9.92 0.76) 9.16 mc atm v
gage

p p p
γ γ γ

 
= − − = − − = − 
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▪Bernoulli Equation in terms of pressure 

 2 2
1 1 1 2 2 2

1 1
2 2

p V z p V zρ γ ρ γ+ + = + +  

 1p = static pressure 

 2
1

1
2

Vρ = dynamic pressure 

 zγ = potential pressure 

 

▪ Stagnation pressure, Sp  

 

Apply Bernoulli equation between 0 and S 

 2 2
0 0 0

1 1
2 2S S Sp V z p V zρ γ ρ γ+ + = + +

 

0 ; 0S Sz z V= ≈
 

 

2
0 0

1 0
2 Sp V pρ+ = +  

 0
0

2( )Sp pV
ρ
−

=  

Pitot tube 

Stagnation 
point 
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[IP 5.4] p.136 

What is the velocity of the airstream, V0? 

 

 

 3 31.23kg m 9810 N mair Wρ γ= =  

 

1
2

0 0
2 ( )S

a

V p p
ρ

 
= − 

 
 

  

By the way,  

 1 2p p=  

1 2 00.15 ; 0.15S air wp p g p pρ γ= + = +  

 0 0.15( ) 0.15(9,810 1.23 9.81) 1,469.7 paS w airp p gγ ρ∴ − = − = − × =  

 0
2 (1,469.7) 48.9 m/s

1.23
V = =  

 

[Cf] If air wγ γ γ= =   

Then, 0Sp p hγ− =  

0 2V gh∴ =  

 

ps 

p0 

1 2 
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▪ Bernoulli principle for open flow  

- Flow over the spillway weir:  a moving fluid surface in contact with the atmosphere 

and dominated by gravitational action 

- At the upstream of the weir, the streamlines are straight and parallel and velocity 

distribution is uniform. 

- At the chute way, Section 2, the streamlines are assumed straight and parallel, the 

pressures and velocities can be computed from the one-dimensional assumption. 

 

[IP 5.6] p.139 

At section 2, the water surface is at elevation 30.5 m and the 60˚ spillway face is at elevation 

30.0 m. The velocity at the water surface at section 2 is 6.11 m/s. 

 

 

 

[Sol] 

Thickness of sheet flow = (30.5 30) / cos60 1 m− =  

Apply 1-D assumption across the streamline at section ② 

 . .
. .

w s b
w s b

p pz z+ = +
γ γ

  

El. 29.0 m 
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 3
. .( ) 9.8 10 (0.5) 4.9 kPab w s bp z zγ∴ = − = × =  

 

Elevation of energy line 
26.130.5 32.4 m

2
H

g
= + =  

  

Apply B.E. between ② and ⓑ  

 
2 2

2 2
22 2

b b
b

p V p Vz z
g gγ γ

+ + = + +  

 
24.932.4 30.0 6.11m s

9.8 2
b

b
V V

g
= + + ∴ =  

 2
2 2 1 6.11 6.11 m sq h V= = × =  per meter of spillway length 

 

Apply Bernoulli equation between ① and ② 

 
2

1
1

1 6.1129.0 32.4
2

y
g y

 
+ + = 

 
 

 1 3.22 my =  

 1
1

6.11 1.9 m s
3.22

qV
h

= = =   

h1 = y1 

Velocity is the same at both 
the surface and the bottom 
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5.5 The Work-Energy Equation 

For pipelines containing pumps and turbines, the mechanical work-energy equation can be 

derived via a control volume analysis. 

 

•  pump = add energy to the fluid system  

   turbine = extract energy from the fluid system 

 

• Bernoulli equation = mechanical work-energy equation for 

 

ideal fluid flow 

 

 

 

 

 

 

 

 

Apply mechanical work-energy principle to fluid flow 

→ work done on a fluid system is exactly balanced by the change in the sum of the kinetic 

energy( KE ) and potential energy( PE ) of the system.  

dW dE=         (1) 

 

where dW = the increment of work done; dE = resulting incremental change in energy 

~ Heat transfer and internal energy are neglected. 
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[Cf] The first law of Thermodynamics 

~ Heat transfer and internal energy are included. 

 

Dividing (1) by dt yields 

 
dW dE
dt dt

=        (2) 

 

(i)Apply the Reynolds Transport Theorem to evaluate the rate of change of an extensive 

property, in this case energy 

→ steady state form of the 

. . . .c s out c s in

dE i v dA i v dA
dt

ρ ρ= ⋅ + ⋅∫∫ ∫∫
   

Reynolds Transport Theorem 

     (3)
 

where i = energy per unit mass
 

 
2

2
Vi gz= +         (4) 

 

Substituting (4) into (3) gives 

 
2 2

. . . .2 2c s out c s in

dE V Vgz v dA gz v dA
dt

ρ ρ
   

= + ⋅ + + ⋅   
   

∫∫ ∫∫
   

  (5)
 

 

where 
dE
dt

 = the rate of energy increase for the fluid system 

→ Even in steady flow, the fluid system energy can change with time because the system 

moves through the control volume where both velocity and elevation can change. 

Potential 
energy Kinetic 

energy 
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Since the velocity vector is normal to the cross sectional area and the velocity is uniform over 

the two cross sections, integration of RHS of (5) yields 

 

2 2
2 1

2 2 2 1 1 1

2 2
2 1

2 2 2 1 1 1

2 2

2 2

dE V Vgz V A gz V A
dt

V Vg z V A g z V A
g g

ρ ρ

ρ ρ

   
= + − +   

   
   

= + − +   
   

   (6) 

 

Continuity equation is 

 2 2 1 1Q V A V A= =        (7) 

 
 

Substituting the Continuity equation into (6) gives 

 
2 2

2 1
2 12 2

dE V VQ z z
dt g g

γ
    

= + − +    
    

     (5.4) 

  

(ii)Now, evaluate the work done by the fluid system ( dW ) 

1) Flow work done via fluid entering or leaving the control volume  

→ Pressure work Areap= × ×Distance 

2) Shaft work done by pump and turbine 

3) Shear work done by shearing forces action across the boundary of the system  

  → 0shearW =  for inviscid fluid 

• Pressure work 

~ consider only pressure forces at the control surface, p1A1 and p2A2 

→ Net pressure work rate = pressure forceⅹdistance / time = pressure forceⅹvelocity 
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= 1 1 1 2 2 2p AV p A V−         (8) 

 

• Shaft work 

        0TW ≥  (energy is extracted from the system) 

        
0pW ≤  (energy is put in) 

→ Net shaft work rate P TQ E Q Eγ γ− =      (9) 

where ( )P TE E = work done per unit weight of fluid flowing  

 

Combining the two net-work-rate equations, Eqs. (8) and (9), yields 

 Net work rate = 1 2
P T

p pQ E Eγ
γ γ

 
− + − 

      (5.5) 

 

Equating Eqs. (5.4) and (5.5), we get 

 
2 2

2 1 1 2
2 12 2 P T

V V p pQ z z Q E E
g g

γ γ
γ γ

      
+ − + = − + −      

     
  (5.6) 

 

Collecting terms with like subscripts gives 

 
2 2

1 1 2 2
1 22 2P T

p V p Vz E z E
g gγ γ

+ + + = + + +     (5.7) 

→ Work-energy equation  

~ used in real fluid flow situations 

~ Work-energy W/O pE  and TE  is identical to the Bernoulli equation for ideal fluid. 

Head, m 
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• Addition of mechanical energy ( PE ) or extraction ( TE ) cause abrupt rises of falls of 

energy line. 

 

• Power of machines  

  
work Force distance

Power
time time

. .W m g E vol g E vol E E Q
t t t t

ρ× × ×  = = = = = = γ × = γ 
 

 
    

 

Kilowatts (kW) of machine = 
1000

P TE or EQγ        (5.8a) 

Horsepower (hp) of machine = 
550

P TE or EQγ    (5.8b) 

  

→ 1 hp 0.746 Wk=  
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[IP 5.7] p.145 

The pump delivers a flowrate of 0.15 m3/s of water. How much power must the pump supply 

to the water to maintain gage readings of 250 mm of mercury vacuum on the suction side

 

Fig. Problem 5.7 

[Sol] 

  

 of 

the pump and 275 kPa of pressure on the discharge side? 

 

1 250 mm of Hg 760 mmHgp = − <  

  2250 133.3 N/m= − × 233,325 N/m= −  

 1 33,325 3.39 m
9800

p −
= = −

γ
 

 2 275 kPa 100 kPap = >  

 
3

2 275 10 28.1 m
9800

p
γ

×
= =  

 

Apply Continuity Equation  

1 1 2 2Q AV A V= =  
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( )

1
2

0.15 4.8 m s
0.2

4

V π= =

 

2 2
1 4.8 1.16 m

2 2 9.8
V

g
∴ = =

×
 

 
( )

2
2

0.15 8.5 m s
0.15

4

V π= =

 

 

2 2
2 8.5 3.68 m

2 2 9.8
V

g
∴ = =

×
 

 

Apply Work-Energy equation between ① & ② 

 
2 2

1 1 2 2
1 22 2p T

p V p Vz E z E
g gγ γ

+ + + = + + +         (5.7) 

 3.39 1.16 0 28.1 3.68 3pE− + + + = + +
 

 
37.0 mpE∴ =  

 

Pump power 
( ) 0.15(9800)(37.0) 54.4 W

1000 1000
pQ E

k
γ

= = =        (5.8b) 

 

• The local velocity in the pump passage may be considerably larger than the average 

velocity in the pipes. 

→ There is no assurance that the pump will run cavitation-free. 
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5.6 Euler's Equations for Two-Dimensional Flow 

 

• Two-Dimensional Flow 

 ~ The solution of flowfield problems is much more complex than the solution of 1D flow. 

 ~ Partial differential equations

 

Fig. 5.9 

 

• Euler’s equations for a vertical two-dimensional flowfield may be derived by applying 

Newton's 2nd law of motion to differential system

 for the motion for real fluid are usually solved by computer-

based numerical methods. 

 ~ present an introduction to certain essentials and practical problems  

 

dxdz . 

 F ma∑ =




 

   

  Force: 

 
x

pdF dxdz
x

∂
= −

∂
 

 z
pdF dxdz gdxdz
z

ρ∂
= − −

∂
 

2
p dxp
x

∂
−

∂
 2

p dxp
x

∂
+

∂
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  Acceleration for steady flow:  

 x
u ua u w
x z

∂ ∂
= +

∂ ∂
  

 z
w wa u w
x z

∂ ∂
= +

∂ ∂
 

 

 

x - direction:  
p u udxdz dxdz u w
x x z

ρ∂ ∂ ∂ − = + ∂ ∂ ∂ 
 

z - direction:  
p w wdxdz gdxdz dxdz u w
z x z

ρ ρ∂ ∂ ∂ − − = + ∂ ∂ ∂ 
 

 

Euler's equation for 2-D flow 

 
1 p u uu w

x x zρ
∂ ∂ ∂

− = +
∂ ∂ ∂

          (5.9a) 

 
1 p w wu w g

z x zρ
∂ ∂ ∂

− = + +
∂ ∂ ∂

          (5.9b) 

 

•Equation of Continuity for 2-D flow of ideal fluid 

 0u w
x z

∂ ∂
+ =

∂ ∂
        (4.11) 

 

Unknowns:  , ,p u w  

Equations:  3   

→ simultaneous solution for non-linear PDE 

 
  

u
t

∂
+

∂  
for unsteady flow 
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5.7 Bernoulli's Equation for Two-Dimensional Flow  

 

Bernoulli’s equation can be derived by integrating the Euler's equations for a uniform density 

flow. 

 

 
1 p u udx u w dx

x x zρ
 ∂ ∂ ∂ × − = + ×  ∂ ∂ ∂  

    (a) 

 
1 p w wdz u w g dz

z x zρ
 ∂ ∂ ∂ × − = + + ×  ∂ ∂ ∂  

   (b) 

(a)+(b):  
1 p p u u w wdx dz u dx w dx u dz w dz gdz

x z x z x zρ
∂ ∂ ∂ ∂ ∂ ∂ − + = + + + + ∂ ∂ ∂ ∂ ∂ ∂ 

  

   
u u w wu dx u dz w dx w dz
x z x z

∂ ∂ ∂ ∂   = + + +   ∂ ∂ ∂ ∂   
 

           
w u u wu dz u dz w dx w dx gdz
x z z x

∂ ∂ ∂ ∂
+ − + − +

∂ ∂ ∂ ∂
 

 

By the way, 

 
p pdp dx dz
x z

∂ ∂
= +

∂ ∂
 

 
u udu dx dz
x z

∂ ∂
= +

∂ ∂
 

 
w wdw dx dz
x z

∂ ∂
= +

∂ ∂
 

 
w u
x z

ξ ∂ ∂
= −

∂ ∂
 

u du  wdw  

( ) ( )w uudz wdx udz wdx
x z

ξ∂ ∂ − − = − ∂ ∂ 
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2( ) 2

2 2
d u u du u uu dx u dz

x z
∂ ∂

= = +
∂ ∂

 

 

Incorporating these terms and dividing by g gives 

 2 21 1( ) ( )
2

dp d u w udz wdx dz
g g

ξ
γ

− = + + − +
   

(c) 

 

Integrating (c) yields 

 2 21 1( ) ( )
2

p u w z H udz wdx
g g

ξ
γ

+ + + = − −∫
   

(d) 

 

where H = constant of integration 

Substituting resultant velocity, V 

       2 2 2V u w= +   

 

 
2 1 ( )

2
p V z H udz wdx

g g
ξ

γ
+ + = − −∫               (5.10) 

 

(i) For irrotational (potential) flow 0ξ =  

 
2

2
p V z H

gγ
∴ + + =   

→ Constant H is the same to all streamlines of the 2-D flowfield. 
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(ii) For rotational flow ( 0ξ ≠ ) :  ( ) 0udz wdxξ − ≠∫  

However, along a streamline for steady flow, 

0w dz udz wdx
u dx

= → − =
      

(e) 

 

Substituting (e) into (5.10) gives 

 
2

2
p V z H

g
+ + =

γ
 

→ H  is different for each streamline.  

 

[Re] 

For ideal incompressible fluid, for larger flow through which all streamlines are straight and 

parallel (irrotational flow) 

→ Bernoulli equation can be applied to any streamline.  
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5.9 Stream Function and Velocity Potential 

 

The concepts of the stream function and the velocity potential can be used for developing of 

differential equations for two-dimensional flow. 

 

5.9.1 Stream function 

Definition of the stream function is based on the continuity principle and the concept of the 

streamline. 

→ provides a mathematical means of solving for two-dimensional steady flowfields. 

 

 

 

Consider streamline A:  no flow crosses it 

→ the flowrateψ across all lines OA is the same. 

→ ψ is a constant of the streamline. 

→ If ψ can be found as a function of x and y, the streamline can be plotted.  

 

The flowrate of the adjacent streamline B will be dψ ψ+  

streamlines 
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The flowrates into and out of the elemental triangle are equal from continuity concept. 

 d vdx udyψ = − +         (a) 

  

Total derivative of ( , )x yψ is  

 d dx dy
x y
ψ ψψ ∂ ∂

= +
∂ ∂

            (5.14) 

 

 Compare (a) & (5.14) 

 u
y
ψ∂

=
∂

           (5.15a) 

 v
x
ψ∂

= −
∂

           (5.15b) 

 

where ψ = stream function 

→ If ψ  is known u, v can be calculated. 

 

Integrate (5.14) 

 dx dy C
x y
ψ ψψ ∂ ∂

= + +
∂ ∂∫ ∫         

 vdx udy C= − + +∫ ∫         (b) 

 

→ If u, v are known ψ can be calculated. 
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▪ Property of stream function 

1) The equation of continuity 

 0u v
x y

∂ ∂
+ =

∂ ∂
            (4.11) 

 

 Substitute (5.15) into (4.11) 

 0
x y y x

ψ ψ ∂ ∂ ∂ ∂ − =  ∂ ∂ ∂ ∂  
 

 
2 2

x y y x
ψ ψ∂ ∂

∴ =
∂ ∂ ∂ ∂

 

  → Flow described by a stream function satisfies the continuity equation. 

 

2)  The equation of vorticity 

 
v u
x y

ξ ∂ ∂
= −

∂ ∂
           (3.10) 

 

  Substitute (5.15) into (3.10) 

 
2 2

2 2x x y y x y
ψ ψ ψ ψξ

 ∂ ∂ ∂ ∂ ∂ ∂ = − − + = − −   ∂ ∂ ∂ ∂ ∂ ∂   
 

   

For irrotational flow, 0ζ =  

 
2 2

2
2 2 0

x y
ψ ψ ψ∂ ∂

∴ + = ∇ =
∂ ∂   

→ Laplace Eq. 

  → The stream function of all irrotational flows must satisfy the Laplace equation.  
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5.9.2 Velocity Potential 

Suppose that another function ( , )x yφ is defined as 

x yV grad e e
x y
φ φφ φ

 ∂ ∂
≡ −∇ ≡ = − + ∂ ∂ 

  

   (a) 

 

By the way,  

 x yV ue ve= +
  

       (b) 

  

 Comparing (a) and (b) gives 

 u
x
φ∂

= −
∂

           (5.16) 

 v
y
φ∂

= −
∂

            

 where velocity potentialφ =  

  

▪ Property of stream function 

1) The equation of continuity 

Substitute Eq. (5.16) into continuity Eq. 

 
x x y y

φ φ ∂ ∂ ∂ ∂ − + −   ∂ ∂ ∂ ∂   
 

 
2 2

2 2 0
x y
φ φ∂ ∂

= + =
∂ ∂

 → Laplace Eq.     (5.18) 

→ All practical flows which conform to the continuity Eq. must satisfy the Laplace  

  equation in terms of φ . 



                             Ch. 5 Flow of an Incompressible Ideal Fluid 
 

5-39 
 

2) Vorticity Eq. 

Substitute Eq. (5.16) into vorticity eq. 

 
2 2

0
x y y x x y y x

φ φ φ φξ
 ∂ ∂ ∂ ∂ ∂ ∂ = − − − = − + =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

 

    

   → The vorticity must be zero

φ

 for the existence of a velocity potential. 

   → irrotational flow = potential flow 

   → Only irrotational flowfields can be characterized by a velocity potential . 
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[IP 5.14] p164 

A flowfield is described by the equation 2y xψ = − .  

  1) Sketch streamlines 0, 1, 2ψ = . 

  2) Derive an expression for the velocity V at any point. 

  3) Calculate the vorticity. 
 

[Sol] 

    1) 20 0 y xψ = → = −  

 2 parabolay x∴ = →  

 21 1y xψ = → = +  

 22 2y xψ = → = +  

 

    2) 22 ( ) 1u y x
y y
ψ∂

= = − =
∂ ∂

 

 2( ) 2v y x x
x x
ψ∂ ∂

= − = − − =
∂ ∂

 

 2 2 2 2 2(2 ) 1 4 1V u v x x∴ = + = + = +  

 

    3) 1(2 ) (1) 2( )v u x s
x y x y

ξ −∂ ∂ ∂ ∂
= − = − =

∂ ∂ ∂ ∂
 

 0ξ∴ ≠ →  The flowfield is rotational. 
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Homework Assignment # 5 

Due:  1 week from today 

 

Prob. 5.6 

Prob. 5.11 

Prob. 5.24 

Prob. 5.30 

Prob. 5.46 

Prob. 5.48 

Prob. 5.59 

Prob. 5.89 

Prob. 5.98 

Prob. 5.104 

Prob. 5.119 

Prob. 5.123 

Prob. 5.149 

Prob. 5.157 

 

 

 

 

 


