Crystal Mechanics

Lecture 3 – Strain measures

Ref: Continuum Theory of Plasticity, A.S. Khan and S. Huang, 1995, Chapter 2

Heung Nam Han

Associate Professor

Department of Materials Science & Engineering

College of Engineering

Seoul National University

Seoul 151-744, Korea

Tel: +82-2-880-9240

Fax: +82-2-885-9647

email: hnhan@snu.ac.kr

Configurations and displacement

Configuration

Atom, molecule, particle → Discrete in nature Material body in large dimension → "Continuum"

Configuration and body

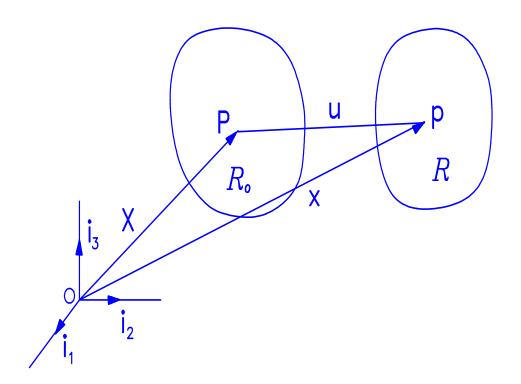
Body B is a whole set of particle.

The particles in the body B are distributed continuously over the region.

Handling variables are classified into two groups *i.e.* time and space.

Configurations and displacement

The origin of our concerned system is the starting point of the every mathematical conceptual manipulation.



Position Vector

$$\boldsymbol{X} = X_K \boldsymbol{i}_K$$
$$\boldsymbol{x} = x_k \boldsymbol{i}_k$$

Configurations and displacement

Displacement Vector

$$x = X + u$$

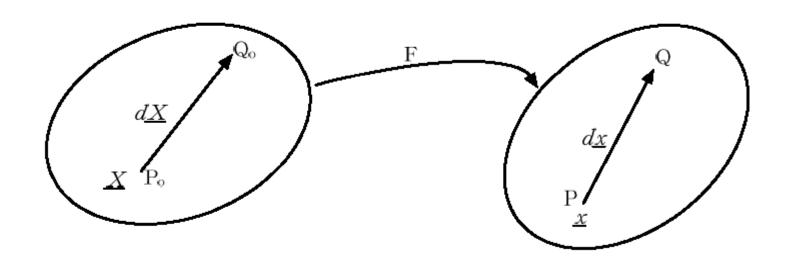
$$u(X,t) = x(X,t) - X$$

in material description (Lagrangian)

$$u(x,t) = x - X(x,t)$$

in spatial description (Eulerian)

Deformation gradient and deformation measure



$$d\mathbf{x} = \frac{\partial \mathbf{x}}{\partial \mathbf{X}} \cdot d\mathbf{X} = \nabla \mathbf{x} \cdot d\mathbf{X} = \mathbf{F} \cdot d\mathbf{X}$$

F: Deformation gradient tensor

Deformation gradient in line element

The Physical Meaning of F

1) Diagonal Term : $\frac{\partial x_i}{\partial X_i}$: The change of length in i direction.

The degree of stretch along i direction

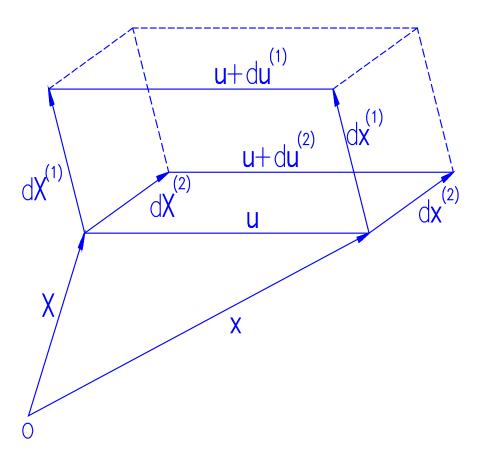
2) Off-diagonal Term : $\frac{\partial x_i}{\partial X_j}$: The degree of angle change of i direction in plane j

Example

When
$$x_1=X_1+aX_2$$
, $x_2=X_2$, $x_3=X_3$,

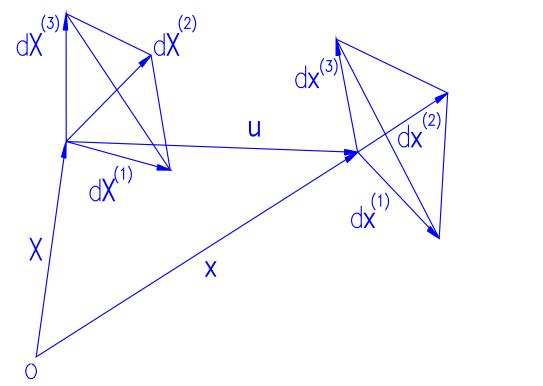
Determine the deformation gradient F.

Deformation gradient in area element



$$d\mathbf{A} = \left[\det(\mathbf{F}) \right]^{-1} \mathbf{F}^{\mathrm{T}} \cdot d\mathbf{a}$$

Deformation gradient in volume element



$$\frac{\mathbf{d}\mathbf{v}}{\mathbf{d}\mathbf{V}} = \det(\mathbf{F})$$

Volumetric strain for classical infinitesimal theory

$$\frac{dv - dV}{dV} = \frac{dv}{dV} - 1 \cong tr(u_{i,k}) = u_{i,i}$$

Measures of finite deformation (Cauchy-Green tensor)

$$\mathbf{B}^{-1} = (\mathbf{F}^{-1})^T \cdot \mathbf{F}^{-1}$$

Cauchy Deformation tensor

left Cauchy-Green tensor

(spatial description)

$$\mathbf{C} = \mathbf{F}^T \cdot \mathbf{F}$$

Green Deformation tensor

right Cauchy-Green tensor

(material description)

Measures of finite deformation (Strain tensor)

Usually the strain measure should be expected to be zero tensor for rigid body motion.

referential or Lagrangian

$$\mathbf{E} = \frac{1}{2}(\mathbf{C} - \mathbf{I}) = \frac{1}{2}(\mathbf{x}_{i,K}\mathbf{x}_{i,L} - \delta_{KL}) = \mathbf{E}_{KL}$$

spatial or Eulerian

$$\mathbf{e} = \frac{1}{2} (\mathbf{I} - \mathbf{B}^{-1}) = \frac{1}{2} (\delta_{ij} - X_{K,i} X_{K,j}) = e_{ij}$$

Measures of finite deformation (Strain tensor)

Green-Lagrangian strain tensor

$$\mathbf{E}_{KL} = \frac{1}{2} (\mathbf{u}_{K,L} + \mathbf{u}_{L,K} + \mathbf{u}_{M,K} \mathbf{u}_{M,L}) \qquad \mathbf{E} = \frac{1}{2} (\mathbf{F}^{T} \cdot \mathbf{F} - \mathbf{I})$$

Almansi-Eulerian strain tensor

$$e_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i} - u_{m,i} u_{m,j})$$
 $e = \frac{1}{2} (\mathbf{I} - (\mathbf{F}^{-1})^{T} \cdot \mathbf{F}^{-1})$

Measures of finite deformation (Strain tensor)

Logarithmic (true, natural) strain tensor

referential or Lagrangian

$$\overline{\mathbf{E}} = \frac{1}{2} \ln \mathbf{C} = \ln \mathbf{C}^{\frac{1}{2}}$$

spatial or Eulerian

$$\overline{\mathbf{e}} = -\frac{1}{2} \ln \mathbf{B}^{-1} = \ln (\mathbf{B}^{-1})^{-\frac{1}{2}}$$

For logarithmic tensor, components should be transformed into the principal axis and taken as the eigenvalues.

Decomposition of deformation gradient

Polar decomposition based on Cauchy theorem

F: non-singular second-order tensor can be **decomposed uniquely into**

$$\mathbf{F} = \mathbf{R} \cdot \mathbf{U} = \mathbf{V} \cdot \mathbf{R}$$

R: orthogonal rotation tensor

U: right Cauchy tensor (symmetric)

V: left Cauchy tensor (symmetric)

$$\mathbf{B} = \mathbf{F} \cdot \mathbf{F}^{\mathrm{T}} = \mathbf{V} \cdot \mathbf{R} \cdot \mathbf{R}^{\mathrm{T}} \cdot \mathbf{V}^{\mathrm{T}} = \mathbf{V}^{2}$$

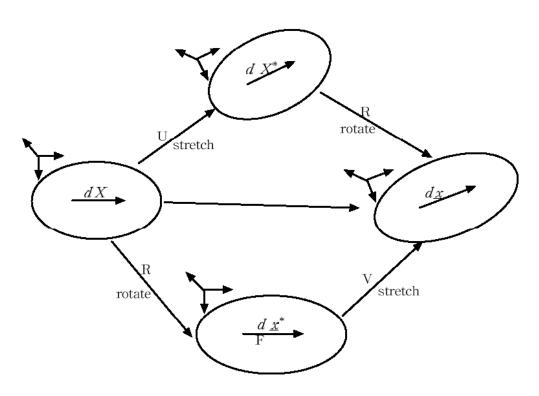
$$\mathbf{C} = \mathbf{F}^{\mathrm{T}} \cdot \mathbf{F} = \mathbf{U}^{\mathrm{T}} \cdot \mathbf{R}^{\mathrm{T}} \cdot \mathbf{R} \cdot \mathbf{V} = \mathbf{U}^{2}$$

Decomposition of deformation gradient

 $d \mathbf{x} = \mathbf{F} \cdot d\mathbf{X}$

$$= \mathbf{R} \cdot \mathbf{U} \cdot d\mathbf{x} = \mathbf{I} \cdot \mathbf{R} \cdot \mathbf{U} \cdot d\mathbf{x} = \mathbf{R} \cdot \mathbf{I} \cdot \mathbf{U} \cdot d\mathbf{x} = \mathbf{R} \cdot \mathbf{U} \cdot \mathbf{I} \cdot d\mathbf{x}$$

$$= \mathbf{V} \cdot \mathbf{R} \cdot d\mathbf{x} = \mathbf{I} \cdot \mathbf{V} \cdot \mathbf{R} \cdot d\mathbf{x} = \mathbf{V} \cdot \mathbf{I} \cdot \mathbf{R} \cdot d\mathbf{x} = \mathbf{V} \cdot \mathbf{R} \cdot \mathbf{I} \cdot d\mathbf{x}$$



Velocity and Acceleration

Velocity: rate of change of displacement

$$\mathbf{v} = \lim_{\Delta t \to 0} \frac{\mathbf{x}(\mathbf{X}, t + \Delta t) - \mathbf{x}(\mathbf{X}, t)}{\Delta t} = \left(\frac{\partial \mathbf{x}}{\partial t}\right)_{\mathbf{X}}$$

Acceleration: rate of change of velocity

$$\mathbf{a} = \lim_{\Delta t \to 0} \frac{\mathbf{v}(\mathbf{X}, t + \Delta t) - \mathbf{v}(\mathbf{X}, t)}{\Delta t} = \left(\frac{\partial \mathbf{v}}{\partial t}\right)_{\mathbf{x}}$$

Material Derivatives

Time derivatives with Lagrangian coordinate

→ Material derivatives

$$\mathbf{a} = \lim_{\Delta t \to 0} \frac{\mathbf{v}(\mathbf{X}, t + \Delta t) - \mathbf{v}(\mathbf{X}, t)}{\Delta t} = \left(\frac{\partial \mathbf{v}(x(X, t), t)}{\partial t}\right)_{\mathbf{X}}$$

$$= \left(\frac{\partial \mathbf{v}(x,t)}{\partial t}\right)_{x} + \frac{\partial \mathbf{v}(x,t)}{\partial x} \cdot \left(\frac{\partial x}{\partial t}\right)_{\mathbf{X}} = \left(\frac{\partial \mathbf{v}(x,t)}{\partial t}\right)_{x} + \mathbf{v} \cdot \frac{\partial \mathbf{v}}{\partial x}$$

$$= \left(\frac{\partial \mathbf{v}}{\partial t}\right)_{\mathbf{x}} + \mathbf{v} \cdot \text{grad } \mathbf{v} = \frac{\mathbf{D}\mathbf{v}}{\mathbf{D}t}$$

$$\frac{\mathbf{D}}{\mathbf{Dt}} = \left(\frac{\partial}{\partial \mathbf{t}}\right)_{\mathbf{x}} + \mathbf{v} \cdot \mathbf{grad}$$

Velocity gradient

F: Total deformation of material related with **X** and **x**

Rate of change in area, line, volume can expressed by what? Answer is velocity gradient **L**.

$$d\mathbf{v} = \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \cdot d\mathbf{x} = \operatorname{grad} \mathbf{v} \cdot d\mathbf{x} = \mathbf{L} \cdot d\mathbf{x}$$

$$\mathbf{L} = \operatorname{grad} \mathbf{v} = \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$$

$$\mathbf{L}_{ij} = \mathbf{v}_{i,j} = \mathbf{x}_{i,j}$$

$$\dot{\mathbf{F}} = \mathbf{L} \cdot \mathbf{F}$$

Velocity gradient

Material derivatives of line, area, volume in initial configuration

$$\frac{D}{Dt}(dX) = \frac{D}{Dt}(dA) = \frac{D}{Dt}(dV) = 0$$

Material derivatives of line, area, volume in current configuration

$$\frac{D}{Dt}(d\mathbf{x}) = \mathbf{L} \cdot d\mathbf{x}$$

$$\frac{D}{Dt}(d\mathbf{a}) = [tr(\mathbf{L})\mathbf{I} - (\mathbf{L})^{T}] \cdot d\mathbf{a}$$

$$\frac{D}{Dt}(d\mathbf{v}) = tr(\mathbf{L})d\mathbf{v}$$

Deformation rate and spin tensors

$$\mathbf{L} = \frac{\partial \mathbf{v}}{\partial \mathbf{x}} = \mathbf{D} + \mathbf{W}$$

$$\mathbf{D} = \frac{1}{2} (\mathbf{L} + \mathbf{L}^{\mathrm{T}})$$
 Deformation Rate Tensor

$$\mathbf{W} = \frac{1}{2} (\mathbf{L} - \mathbf{L}^{\mathrm{T}}) \quad \text{Spin Rate Tensor}$$

$$\operatorname{tr}(\mathbf{L}) = \operatorname{tr}(\mathbf{D})$$

$$tr(\mathbf{W}) = 0$$

Material derivatives of strain tensors

$$\dot{\mathbf{C}} = 2\mathbf{F}^{\mathrm{T}} \cdot \mathbf{D} \cdot \mathbf{F}$$

$$\dot{\mathbf{B}} = \mathbf{B} \cdot \mathbf{L}^{\mathrm{T}} + \mathbf{L} \cdot \mathbf{B}$$

$$\dot{\mathbf{E}} = \frac{1}{2} \dot{\mathbf{C}} = \mathbf{F}^{\mathrm{T}} \cdot \mathbf{D} \cdot \mathbf{F}$$

$$\dot{\mathbf{e}} = -\frac{1}{2} \dot{\mathbf{B}}^{-1} = \frac{1}{2} (\mathbf{L}^{\mathrm{T}} \cdot \mathbf{B}^{-1} + \mathbf{B}^{-1} \cdot \mathbf{L}) = \mathbf{D} - (\mathbf{e} \cdot \mathbf{L} + \mathbf{L}^{\mathrm{T}} \cdot \mathbf{e})$$
Homework