Relaxation in metallic glasses
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Relaxation in glasses
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* In the physical sciences, relaxation usually means the return of a perturbed system
into equilibrium. Each relaxation process can be categorized by a relaxation time t.

* The activation of viscous flow reflects the complete relaxation of the system,
accommodating its structure under the application of an external force

* Therefore, in structural glasses, viscosity is directly related to the primary relaxation
time of the system, the so-called a-relaxation




DMA measurement : Phase lag, storage modulus and loss modulus

Perfectly elastic (time-independant) Anelastic (viscoelastic, time-dependant)
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Menard, K. P., Dynamic Mechanical Analysis: A Practical Introduction, Second Edition. CRC Press: 2008.



Anelasticity of metallic glass (nanoindentation creep test)
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Anelasticity of metallic glass (nanoindentation creep test)
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Two main relaxation processes in glasses

* glass-forming mixture chlorobenzene/cis-decalin
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» glasses and the forming of supercooled liquids have two main relaxation processes
: primary (a) and secondary (f8) relaxations.
* Relaxation in this glassy range involves decoupled, localized motion of easily mobile species;

this is usually called secondary relaxations
* The a relaxation is responsible for vitrifaction, and its arrest (near T,)

* However, as the a relaxation disappears below the glass transition temperature Tg, the 8
relaxation, which initiates at high temperature and continues below T,, is the principal source
of dynamics in the glassy state

Wang, Z., et al. "Evolution of hidden localized flow during glass-to-liquid transition in metallic glass." Nature communications 5 (2014): 5823.



Correlations between deformation map and relaxation spectrum
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Wang, Z., et al. "Evolution of hidden localized flow during glass-to-liquid transition in metallic glass." Nature communications 5 (2014): 5823.



Activation energy of 3-relaxation and Potential energy barrier of STZ
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Clearly, this relation connects two fundamental issues in glassy physics
: the deformation mechanisms and relaxation dynamics.

Yu, H. B., et al. Physical Review B81.22 (2010): 220201. 8



Achieving tensile ductility in MGs by activation of b relaxations
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* One can expect that MGs with pronounced b relaxations at relatively low
temperatures might be macroscopically ductile

* The pronounced beta relaxations of the MG indicate that the MG has abundant
potential STZs, and global tensile plasticity can then be triggered when the high
density potential STZs are activated to reach the percolation limit by external
stresses



Correlation between beta relaxation and alpha relaxation in MGs
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In addition, the behavior of the b relaxation in MGs is sensitive to chemical compositions.
For example, as shown in Fig. 2b, the replacement of a small amount of Ni by Cuin a
La70Ni15Al15 MG results in a dramatic change in the appearance of the beta relaxations



Correlation between beta relaxation and spatial heterogeneity

amplitude-modulation dynamic atomic force microscopy
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Figure 3 | Evolution of spatial heterogeneity during sub-T, relaxation at T, = 553 K. Phase shift images of (a) the hyper-quenched metallic glass, (b) the
metallic glass relaxed at 553 K for 5 min and (¢) relaxed at 553 K for 720 min. (d) Correlation function curves of the samples annealed at 553 K for different
durations. The correlation lengths of spatial heterogeneity in phase shift images can be determined by the correlation function curves. Note that the curves
were shifted vertically for clear identification.

Evolution of spatial heterogeneity in a hyper-quenched metallic glass during sub-Tg b-relaxation is
reported.

The characteristic relaxation times and activation energy of the spatial heterogeneity dynamics are in
well accordance with those of b-relaxation, evidencing the intrinsic correlation between local
structure evolution and sub-Tg b-relaxation



Relaxation and Rejuvenation of metallic glass

Nature Reviews Materials 1, 16039 (2016)
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Rejuvenation of metallic glass
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« While it improves the plasticity of the glass, this degree of rejuvenation has not
yet eliminated the shear banding instability, a goal that remains for future work.

Pan, J., et al. Nature communications 9.1 (2018): 560.



Conclusion
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* In the physical sciences, relaxation usually means the return of a perturbed system
into equilibrium. Each relaxation process can be categorized by a relaxation time t.

* the B relaxation, which initiates at high temperature and continues below T, is the
principal source of dynamics in the glassy state

* Understanding of structural origin of b-relaxation gives the microscopic connection
between structure and dynamics of metallic glasses
—> Important in designing novel metallic glasses with improved properties
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Phenomenology of supercooling and glass formation
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Upon cooling below the freezing point Tm, molecular motion slows down.
If the liquid is cooled sufficiently fast, crystallization can be avoided

Eventually molecules will rearrange so slowly that they cannot adequately sample
configurations in the available time allowed by the cooling rate

The slower a liquid is cooled, the longer the time available for configurational sampling
at each temperature, and hence the colder it can become before falling out of liquid-state
equilibrium




