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Interstitial solution
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- Binary System
Ideal solution

Regular solution

mixture/ solution / compound
(∆Hmix=0)

         mix AB AB AA BB
1H P where ( )
2

0

Real solution

Hmix > 0  or Hmix < 0

Random distribution

Ordered structure

 > 0,  Hmix > 0 < 0,  Hmix< 0

Ordered alloys            Clustering
PAB Internal E PAA, PBB

strain effect
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: Solid solution → ordered phase : Compound : AB, A2B…0 S
mixH 0 S

mixH

0 S
mixH > 0 S

mixH >> 0: Solid solution → solid state 
phase separation (two solid solutions)

: liquid state phase separation 
(up to two liquid solutions)

metastable miscibility gap

stable miscibility gap
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Equilibrium in Heterogeneous Systems

α1 β1α4 β4

-RT lnaB
β

-RT lnaB
α-RT lnaA

α

-RT lnaA
β

aA
α=aA

β aB
α=aB

β

Ge

In X0,  G0
β > G0

α > G1 α + β separation unified chemical potential
μBμA =

μB
μA
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1) Simple Phase Diagrams (1) completely miscible in solid and liquid.
(2) Both are ideal soln.
(3) Tm(A) > Tm(B)
(4) T1 > Tm(A) >T2 > Tm(B) >T3

1.5 Binary phase diagrams

1) Variation of temp.: GL > Gs

2) Decrease of curvature of G curve
(∵ decrease of -TΔSmix effect)

Assumption: 
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2)  Systems with miscibility gab
0 L

mixH

How to characterize Gs mathematically
in the region of miscibility gap between e and f ?

congruent minima

0 S
mixH

1.5 Binary phase diagrams
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2) Variant of the simple phase diagram

0 l
mixmix HH 0 mixH

congruent maxima
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• ΔHm>>0 and the miscibility gap extends to the melting temperature.
(when both solids have the same structure.)

4) Simple Eutectic Systems 0 L
mixH 0 S

mixH

1.5 Binary phase diagrams

Fig. 1.32 The derivation of a eutectic phase diagram where both solid phases have the same crystal structure.
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(when each solid has the different crystal structure.)

Fig. 1.32 The derivation of a eutectic phase diagram where each solid phases has a different crystal structure.
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5) Phase diagrams containing intermediate phases

1.5 Binary phase diagrams
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5) Phase diagrams containing intermediate phases

1.5 Binary phase diagrams
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θ phase in the Cu-Al system is usually denoted as CuAl2 although
the composition XCu=1/3, XAl=2/3 is not covered by the θ field
on the phase diagram.
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Summary I : Binary phase diagrams

1) Simple Phase Diagrams

2)  Systems with miscibility gap

4) Simple Eutectic Systems

3) Ordered Alloys

5) Phase diagrams containing intermediate phases

Both are ideal soln. →

0 L
mixH 0 S

mixH
1)Variation of temp.: GL > Gs 2)Decrease of curvature of G curve + Shape change of G curve by H 

0 L
mixH 0 S

mixH
→ miscibility gap extends to the melting temperature. 

0 L
mixH 0 S

mixH

ΔHmix<< 0 → The ordered state can extend to the melting temperature.
ΔHmix  < 0 → A atoms and B atoms like each other. → Ordered alloy at low T

Stable composition  =  Minimum G with stoichiometric composition 

1) Variation of temp.: GL > Gs 2) Decrease of curvature of G curve

(∵ decrease of -TΔSmix effect)
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Degree of freedom (number of variables that can be varied independently)

The Gibbs Phase Rule

= the number of variables – the number of constraints
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The Gibbs Phase Rule

In chemistry, Gibbs' phase rule describes the possible number of
degrees of freedom (F) in a closed system at equilibrium, in terms of
the number of separate phases (P) and the number of chemical
components (C) in the system. It was deduced from thermodynamic
principles by Josiah Willard Gibbs in the 1870s.

In general, Gibbs' rule then follows, as:

F = C − P + 2 (from T, P).
From Wikipedia, the free encyclopedia

1.5 Binary phase diagrams
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2

2

23
1

1

1

1 single phase
F = C - P + 1

= 2 - 1 + 1
= 2

can vary T and 
composition 
independently

2 two phase
F = C - P + 1

= 2 - 2 + 1
= 1

can vary T or
composition 

3 eutectic point
F = C - P + 1

= 2 - 3 + 1
= 0

can’t vary T or 
composition

For Constant Pressure, 
P + F = C + 1

The Gibbs Phase Rule
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The Gibbs Phase Rule
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1.5.7 Effect of T on solid solubility
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 이므로

Q : heat absorbed (enthalpy) when 1 mole of β dissolves in A rich α as a dilute solution.

 e
BXT









RT
QAX e

B expA is virtually insoluble in B.

 BB G~ _

Stable β form

Unstable α form
A is virtually insoluble in B

 e
BXT
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* Limiting forms of eutectic phase diagram

The solubility of one metal in another may be so low.









RT
QAX e

B exp

It is interesting to note that, except at absolute zero, 
XB

e can never be equal to zero, that is, no two compo
-nents are ever completely insoluble in each other. 

 e
BXTa)

b)
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1) Vacancies increase the internal energy of crystalline metal 
due to broken bonds formation.

2) Vacancies increase entropy because they change 
the thermal vibration frequency and also the configurational entropy. 

• Total entropy change is thus

V VH H X 

           A A V V V V V V V VG G G G H X T S X RT{X ln X (1 X )ln(1 X )}

The molar free energy of the crystal containing Xv mol of vacancies

      V V V V V VS S X R{X ln X (1 X )ln(1 X )}

With this information, 
estimate the equilibrium vacancy concentration.

1.5.8. Equilibrium Vacancy Concentration STHG 

(Here, vacancy-vacancy interactions are ignored.)

Small change due to changes in the vibrational frequencies “Largest contribution”

G of the alloy will depend on the concentration of vacancies and       will be that 
which gives the minimum free energy.

a) 평형에 미치는 공공의 영향
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• In practice, ∆HV is of the order   
of 1 eV per atom and XV

e

reaches a value of about 10-4~10-3 

at the melting point of the solid



 
 

  e
V VV X X

dG 0
dX

    e
V V VH T S RTln X 0

 
 

    




e V V
V

V V V

e V
V

S HX exp exp
R RT

putting G H T S
GX exp

RT

at equilibrium

Fig. 1.37 Equilibrium vacancy concentration.
: adjust so as to reduce G to a minimum

A constant ~3, independent of T Rapidly increases with increasing T

Equilibrium concentration       will be that which gives the minimum free energy.
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r
VG m2



r
P 2


Fig. 1.38   The effect of interfacial E on the solubility of small particle

1.6 Influence of Interfaces on Equilibrium

The G curves so far have been based on the molar Gs of infinitely large amounts of material of 
a perfect single crystal. Surfaces, GBs and interphase interfaces have been ignored.

Extra pressure ΔP due to curvature of the α/β

ΔG = ΔPꞏV

The concept of a pressure difference is very
useful for spherical liquid particles, but it is less
convenient in solids (often nonspherical shape).

Fig. 1.39 Transfer of dn mol of β from large to a small particle.

Spherical interface

Planar interface

dG = ΔGγdn = γdA ΔGγ = γdA/dn

Since n=4πr3/3Vm and A = 4πr2

r
VG m2



Early stage of phase transformation

Interface (α/β)=γ

- b) 평형에 미치는 계면의 영향
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

Gibbs-Thomson effect (capillarity effect): 
Free energy increase due to interfacial energy

For small values of the exponent,

For r=10 nm, solubility~10% increase
Fig. 1.38 The effect of interfacial energy on the solubility of small particles.

Quite large solubility differences can arise for 
particles in the range r=1-100 nm.  However, 
for particles visible in the light microscope 
(r>1um) capillarity effects are very small.









RT
QAX e

B exp
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n
V

m

GG per unit volume of
V


 

0V eG X where X X X     

Total Free Energy Decrease per Mole of Nuclei

Driving Force for Precipitate Nucleation

G0=-VGV +Aγ + VGs

  BBAA XXG  1

  BBAA XXG  2

12 GGGn 

For dilute solutions,

TXGV 

: 변태를 위한 전체 구동력/핵생성을 위한 구동력은 아님

: Decrease of total free E of system
by removing a small amount of material 
with the nucleus composition (XB

β) (P point)

: Increase of total free E of system
by forming β phase with composition XB

β

(Q point)

: driving force for β precipitation

∝undercooling below Te

(length PQ)

GV

Chapter 5.1
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1.8 Additional Thermodynamic Relationships for Binary Solutions

1
)(d

X
d

X
d AB

A

B

B

A  


1
AB

BdX
dG  



2

2A A B B A B B
d GX d X d X X dX
dX

   

0A A B BX d X d  

Gibbs-Duhem equation: Calculate the change in (dμ) that results from a change in (dX)

Comparing two similar triangles,

Substituting right side Eq.
& Multiply XAXB

d2G/dX2
d2G/dXB2=d2G/dXA2

,

Eq. 1.65
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The Gibbs-Duhem Equation
be able to calculate the change in chemical potential (dμ) that result 
from a change in alloy composition (dX).

    A A B B A B A A B BG X G X G X X RT(X lnX X lnX )
2

2 2
A B

d G RT
dX X X

  

For a ideal solution,  = 0,

2

2
A B

d G RT
dX X X



     B B B B B BG RTlna G RTln X

ln1 1
ln

B B B B

B B B B B B

d RT X d RT d
dX X dX X d X
  


   

      
   

For a regular solution,

Additional Thermodynamic Relationships for Binary Solutions

합금조성의 미소변화 (dX)로 인한 화학퍼텐셜의 미소변화(dμ) 를 계산

γB= aB/XB

①

②

Differentiating
With respect to XB,

Different form
Eq. 1.65
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a similar relationship can be derived for dμA/dXB

ln ln1 1
ln ln

A B
A A B B B B

A B

d dX d X d RT dX RT dX
d X d X

  
   

        
   

2

2A A B B A B B
d GX d X d X X dX
dX

   

2

2

ln ln1 1
ln ln

A B
A B

A B

d G d dX X RT RT
dX d X d X

    
      

   
be able to calculate the change in chemical potential (dμ) that 
result from a change in alloy composition (dX).

Eq. 1.65

ln1 1
ln

B B B B

B B B B B B

d RT X d RT d
dX X dX X d X
  


   

      
   

Eq. 1.69

Eq. 1.70

The Gibbs-Duhem Equation
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• Effect of Temperature on Solid Solubility

• Equilibrium Vacancy Concentration

• Influence of Interfaces on Equilibrium

• Gibbs-Duhem Equation: Be able to calculate the change in   

chemical potential that result from a change in alloy composition.

r
VG m2

 Gibbs-Thomson effect

2

2

ln ln1 1
ln ln

A B
A B

A B

d G d dX X RT RT
dX d X d X

    
      

   
합금조성의 미소변화 (dX)로 인한 화학퍼텐셜의 미소변화(dμ) 를 계산

- Gibbs Phase Rule F = C − P + 1   (constant pressure)
Gibbs' Phase Rule allows us to construct phase diagram to represent 
and interpret phase equilibria in heterogeneous geologic systems. 

Summary II: Binary phase diagrams
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Topic proposal for materials design
Please submit 3 materials that you
want to explore for materials design
and do final presentations on in this
semester. Please make sure to
thoroughly discuss why you chose
those materials (up to 1 page on each
topic). The proposal is due by
September 26 on eTL.

Ex) stainless steel/ graphene/ OLED/
Bio-material/ Shape memory alloy
Bulk metallic glass, etc.


