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Ch. 3

KINETICS OF ELECTRODE
REACTIONS



3.1 REVIEW OF HOMOGENEOUS KINETICS

= Consider a simple unimolecular elementary chemical reaction between A and B

k
A=B
ks,

- The rate of the forward process, v; (M/s),

Vg = kg Cp
ki and ki, : rate constants
- The rate of the backward process, v, (M/s),
Up = kbCB

- The net conversion rate of A to B

Unet = kfCp — kpCp



3.1 REVIEW OF HOMOGENEOUS KINETICS

= At equilibrium, the net conversion rate is zero

A=B Unet = kfCA — kyCp =0

- But, the rate of the forward or backward processes is not zero

> The rate of the forward process = The rate of the backward process

Vo = k(Cadeq = kp(CB)eg

> v, the exchange velocity of the reaction



3.1 REVIEW OF HOMOGENEOUS KINETICS

= The rate constants are expressed in the Arrhenius form:

L = Ae—EnRT

E,: activation energy

A: frequency factor

= In terms of free energy based on the activated complex theory:

Activated complex

Reactant

k= A’ e"—.ﬁGifRT

Standard free energy

Product

Reaction coordinate



3.2 ESSENTIALS OF ELECTRODE REACTIONS

= Consider a general electrode reaction (electrochemical reaction) of

kg
O+ ne=R
kb
- The rate of the forward (cathodic) reaction, v (M/s), - k; and k,, : rate constants
i - C(x,t): concentration at

f ¢Co(0, 1) nFA distance x and time t)

> The rate of the backward (anodic) reaction, v, (M/s), - C(0,1): surface

concentration

i
vy = kpyCr(0, 1) = n; 1

- The net reaction rate

;
nFA

Unet — Ur — Uy = kaO(O’ I) - kbCR(O’ f) =

i =i, — i, = nFA[k: Co(0, 1) — kyCr(0, 1]



3.2 ESSENTIALS OF ELECTRODE REACTIONS

= Consider the simplest possible electrode process, wherein species O and R engage

in a one-electron transfer at the interface without being involved in any other chemical

step

k : Cco
O+e=R E=E" + XL =0
k, Gy

at equilibrium

cathodic activation energy at E”

AG,

Standard free energy

o ] _

Reaction coordinate

anodic activation energy
at EY
AG},



3.2 ESSENTIALS OF ELECTRODE REACTIONS
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Reaction coordinate

= If the potential is changed by AE to a new value, E,

- the relative energy of the electron resident on the electrode changes by -FAE = -F(E
—-E%) = AG

> hence the O + e curve shifts up or down by that amount

- At a positive potential difference (E>EO)

: the energy of electron is lowered, and the O + e curve shifts down

: the anodic activation energy is lowered



3.2 ESSENTIALS OF ELECTRODE REACTIONS

Standard free energy

o I _

Standard free energy

Reaction coordinate Reaction coordinate

. the transfer coefficient
- can range from zero to unity > dependent on the shape of the intersection region

= At potential E
AGE = AGE, — (1 — a)F(E — EY) AGE < AG,

AGE = AG}. + aF(E — EY) AG: > AGE. -




3.2 ESSENTIALS OF ELECTRODE REACTIONS

= Now let us assume that the rate constants k; and k, have an Arrhenius form that can

be expressed as

ki = Arexp (—AG¥RT)
ky, = Ayexp (—AGE /RT)

AGE = AGE, — (1 — a)F(E — EY)

AGY = AG}, + aF(E — E)

» k; = Arexp (—AG/RTexp[—af (E — E%)] where f = F/RT

ky, = Aexp (—AGE, /RT)exp[(1 — a)f(E — E?)]

=> The first two factors in each of these expressions
. independent of potential

. equal to the rate constant at E = E°".



3.2 ESSENTIALS OF ELECTRODE REACTIONS

= Consider the special case in which the interface is at equilibrium with a solution
in which . C3 = Cg

=> In this situation,

/
RT, £6
_ g0 _ o RT. Lo .
E=E « E=E nF W at equilibrium
R
kCE = kvCh « Upet = Us — Uy = kCo(0, 1) — kyCR(O, 1)

= kCS - kCh

=0

E=EO

> The potential where the forward and reverse rate constants have the same value

- That value of rate constant: standard rate constant, k°



3.2 ESSENTIALS OF ELECTRODE REACTIONS

= The rate constants at other potentials can then be expressed simply in terms of kO

ke = Acexp (—AGE [RT)expl—af (E — EY)] » ke = k%xp [~ of (E — E?)]

ky, = Apexp (—AGE, [RTexp[(1 — a)f(E — E?)] ,
b T AP 3 P~ a)) ky = k%xp [(1 — a)f (E — EY)]

k
= The net reaction rate for O + e%R
b
;

Unet — U — Ub = kaO(O, f) - kbCR(O’ f) = nFA

i = i, — iy = nFA[k; Co(0, 1) — kpyCR(0, 1)]

i = FAK [c (0, e A E—E%) _ (0, et~ f E - E"')}

- the relationship between current and potential



3.4 THE BUTLER-VOLMER MODEL

* At equilibrium (E = E,;), the net current is zero

i = FAK® [C 0(0, e~ E~E7) — C (0, et~ E - Ew)] = 0

» Iy@co(o, fe~fEeq=E") = E,@CR(O, el —)f(Eeq=E")

= Also, at equilibrium, C(O,t) = C*

o CS | . .
fEeq—E”) = —2 : simply an exponential form of the Nernst relation
Cr
T Co ,
» Eeq = EO 4+ %—ln—% : reasonable to use the activated complex
C : .
R theory for electrochemical reactions




3.4 THE BUTLER-VOLMER MODEL

= Even though the net current is zero at equilibrium, the cathodic and anodic
reaction rates (currents) are not zero

2>i1=i-i;,=0

2> . =1,

= At equilibrium, the magnitude to either component current, i. or i, is called the
exchange current i,

- Similar to exchange velocity for chemical reactions

i = FAK® [C 0(0, e T E=E) — C (0, et~/ E - E”')] = 0

FAKCo(0, e~ EeaE") = FAKCR(0, et~ Eea—E")

— o f(Fap—EY
m) iy = FAK'C &e o EeqED)



3.4 THE BUTLER-VOLMER MODEL

ef(Eeq_EO') —

Q|Q
% | O %

If both sides of the above equation are raised to the -a power, we obtain

_ . - GI
iy = FAK'C e~ Eeq=E™)

» iy = FAK'CE ' c¥* )

i = FAK [C 0(0, e E=ED — C (0, e~ E E°'>] J




3.4 THE BUTLER-VOLMER MODEL

i _ Col0,ne —of(E=E”) R0, el ~OfE=E")

Iy Cg(l—a)c ;{I‘a Cg(l_a)Cﬁka

i Co0,0) e‘“f(E*EOJ)(C_‘#i)a _ CR(0,9) (- fE-E) (C_g)—(l—a)

ig ca Ca c¥ Ca
RT (Eeq ") _ CO B
Eeq =EY + -};,—IIIE% ¢/Feq E7) = F
R R —

o0 _. CrO.D
» I:£0|: Oc* e fﬂv-];{(:‘—g{e(l a)fn TIZE__‘E?q

: the current-overpotential equation
- the first term describes the cathodic component current at any potential,

and the second gives the anodic contribution



3.4 THE BUTLER-VOLMER MODEL
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Figure 3.4.1 Current-overpotential curves for the system O + ¢ 2 R witha = 0.5, T = 298 K,
I1c = =iy = iyand ip/iy = 0.2. The dashed lines show the component currents i, and i,.

: The solid curve shows the actual total current, which is the sum of the components i.

and i,, shown as dashed traces.



3.4 THE BUTLER-VOLMER MODEL

= In going either direction from E., (red box),

- the magnitude of the current rises rapidly i R T et i
I L]
. . . 1!
- the exponential factors dominate behavior 4 CoO0, 00 _ et TCRO DY (g i
=1 o e I = Ie
O I : R
: 1
T 1 ___ 2 I

= At extreme n (blue box), —  TTTTTIEEEITTTY Reemmmes
- the current approaches the limiting current
- the current is limited by mass transfer
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3.4 THE BUTLER-VOLMER MODEL

(a) No Mass-Transfer Effects

= If the solution is well stirred, or currents are kept so low that the surface

concentrations do not differ appreciably from the bulk values

. [CO 0, £) CR(O r) - am

» | = :'0[3"“f“—e(1 _“)f":|

: the Butler-Volmer equation

- It is a good approximation when i is less than about 10% of the smaller

limiting current, i, or i ,.



3.4 THE BUTLER-VOLMER MODEL

= Effect of exchange current density on the current-overpotential profile

I = ;'0|:€““fﬂ_€(1 —a')fﬂ:|

'!
7
I
4
'f
e
J"
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! L. | | abm” L
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Figure 3.4.2 Effect of exchange current densny on the activation overpotential required to deliver
net current den51tlcs (@) jo = 1073 A/cm? (curve is indistinguishable from the current axis),

b) jo=10" 6 Afem?, (c) jo = 10~° A/cm?. For all cases the reaction is O + ¢ 2 R with @ = 0.5
and T = 298 K.



3.4 THE BUTLER-VOLMER MODEL

= Effect of the transfer coefficient on the current-overpotential profile

.. - _ i, pA/em?
] = I0|:€ afﬂ_e(l a).frl':l J

| |
-150 -200
n, mV

Figure 3.4.3 Effect of the transfer coefficient on the symmetry of the current-overpotential curves
for O + e = R with T = 298 K and j, = 107® A/em?.



3.4 THE BUTLER-VOLMER MODEL

(b) Linear Characteristic at Small n

= For small values of x,
- the exponential e* can be approximated as 1 + x

- For sufficiently small n

| = 1'0|:e"“f”—€(1 _“)f":| » i=1ip[l—afn—{1+1-a)fn}]

» i = —iyfn

— The net current is linearly related to overpotential in a narrow potential range near E,,.




3.4 THE BUTLER-VOLMER MODEL

i = —iofn

- The ratio -n/i has units of resistance
: RT
: called the charge-transfer resistance, R R, = Fi.
ifi) )
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Figure 3.4.1 Currentfverpotential curves for the system O + e 2 R witha = 0.5, T = 298 K,
I1c = —ij, = §jand iy/i; = 0.2. The dashed lines show the component currents i, and i,.



3.4 THE BUTLER-VOLMER MODEL

(c) Tafel Behavior at Large n

= For large values of n (either negative or positive), one of the bracketed terms in

ifi;
the | — n equation becomes negligible. o J
0.8
04 Total current
J | . ___r_’___-’.” —1‘00 —zloo —a‘uo —4’00
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Figure 3.4.1 Current-overpotential curves for the system O + ¢ 2 R witha = 0.5, T = 298 K,
¢ = —ija = fpand ip/i) = 0.2. The dashed lines show the component currents i, and i,.

= At large negative overpotentials, exp(-afn) >> exp[(1l - afn]

[ = I-O|:€-cxf1]_€(1 - )fn:| » | = I-Ue—t:tfn

RT
n= oF

RT

aFlnz

In iy =

: the Tafel equation



3.4 THE BUTLER-VOLMER MODEL

= The Tafel equation can be expected to hold whenever the backward reaction
contributes less than 1% of the forward current (or vice versa)

>
e~

e~

= ¢/ < 0.01

: implies that [n| > 118 mV at 25°C





