Introduction to Nuclear Fusion

Prof. Dr. Yong-Su Na

How to describe a plasma?

Plasmas as Fluids

- Ideal MHD
- Single-fluid model
- Ideal:

Perfect conductor with zero resistivity

- MHD:

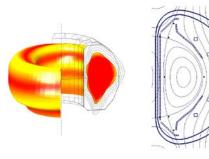
Magnetohydrodynamic (magnetic fluid dynamic)

- Assumptions:

Low-frequency, long-wavelength collision-dominated plasma

- Applications:

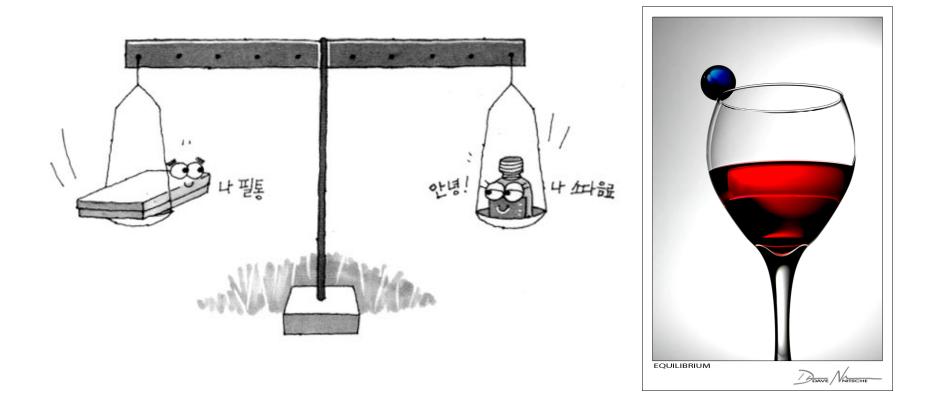
Equilibrium and stability in fusion plasmas



$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \vec{v} = 0$
$\rho \frac{d\vec{v}}{dt} = \vec{J} \times \vec{B} - \nabla p$
$\frac{d}{dt}\left(\frac{p}{\rho^{\gamma}}\right) = 0$
$\vec{E} + \vec{v} \times \vec{B} = 0$
$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
$ abla imes ec B = \mu_0 ec J$
$\nabla \cdot \vec{B} = 0$

What is plasma equilibrium?

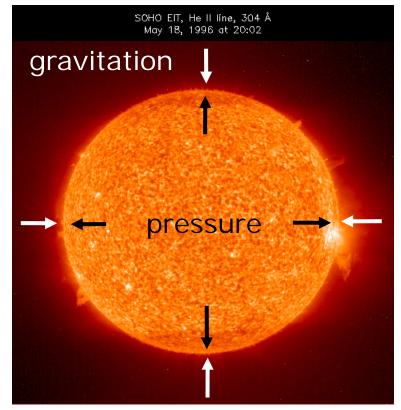
Equilibrium and Stability



Equilibrium? Yes! Forces are balanced

5

Equilibrium and Stability



Equilibrium in the sun

We need a fusion device which confines the plasma particles to some region for a sufficient time period by making equilibrium.

Equilibrium

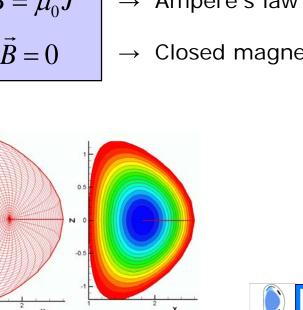
0.5

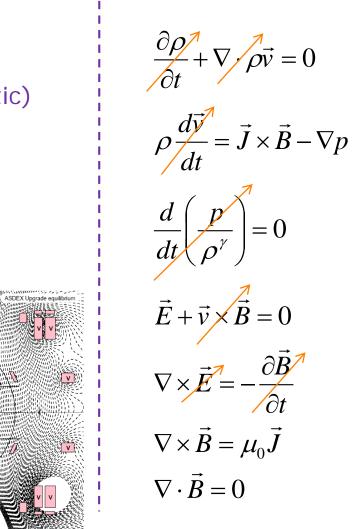
N

KSTAR

Basic Equations

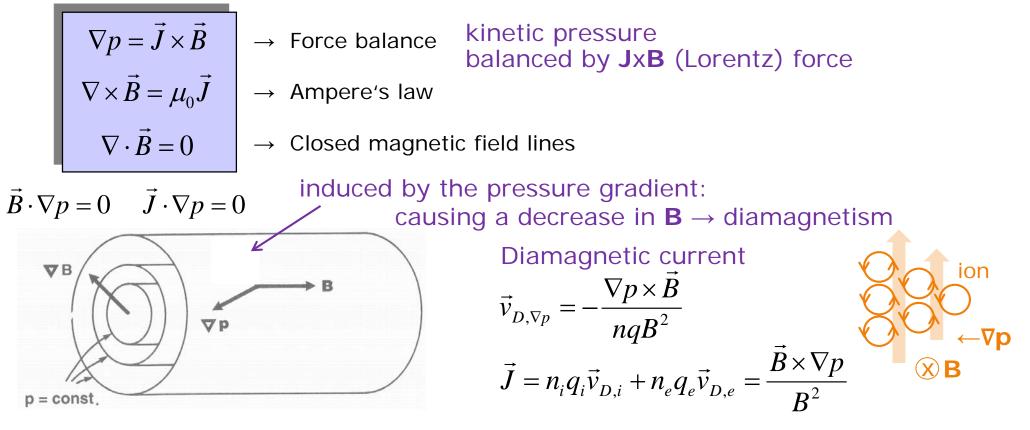
- MHD equilibrium equations: time-independent with $\mathbf{v} = 0$ (static)
- $\begin{array}{ll} \nabla p = \vec{J} \times \vec{B} & \rightarrow \mbox{ Force balance} \\ \nabla \times \vec{B} = \mu_0 \vec{J} & \rightarrow \mbox{ Ampere's law} \\ \nabla \cdot \vec{B} = 0 & \rightarrow \mbox{ Closed magnetic field lines} \end{array}$





Magnetic and Kinetic Pressure

• Plasma Equilibrium



- If *B* is applied, plasma equilibrium can be built by itself due to induction of diamagnetic current. $\nabla p = \vec{J} \times \vec{B}$

Magnetic and Kinetic Pressure

• Plasma Equilibrium

$\nabla p = \vec{J} \times \vec{B}$	→ Force balance kinetic pressure balanced by JxB (Lorentz) force
$\nabla \times \vec{B} = \mu_0 \vec{J}$	→ Ampere's law
$\nabla \cdot \vec{B} = 0$	\rightarrow Closed magnetic field lines

$$\nabla p = (\nabla \times B) \times B / \mu_0$$
$$= [(B \cdot \nabla)B - \nabla (B^2 / 2)] / \mu_0$$

$$\nabla(p+B^2/2\mu_0) = (B\cdot\nabla)B/\mu_0$$

Assuming the field lines are straight and parallel

$$\frac{E_{mag}^*}{V} = \frac{BH}{2} = \frac{B^2}{2\mu_0}$$

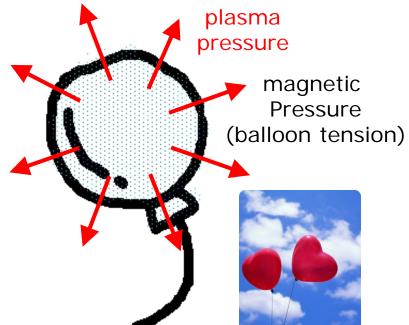
 $p + \frac{B^2}{2\mu} = \text{constant}$ Total sum of kinetic pressure and magnetic field energy density (magnetic pressure) will be a constant

Magnetic and Kinetic Pressure

Concept of Beta

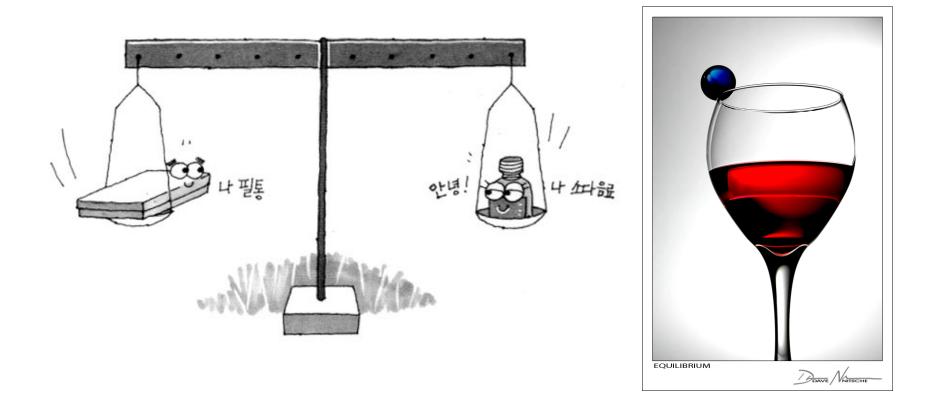
$$\beta = \frac{p}{B^2 / 2\mu_0} = \frac{(n_i + n_e)kT}{B^2 / 2\mu_0}$$

- The ratio of the plasma pressure to the magnetic field pressure
- A measure of the degree to which the magnetic field is holding a non-uniform plasma in equilibrium.
- In most magnetic configurations, fusion plasma confinement requires an imposed magnetic pressure significantly exceeding the particle kinetic pressure.



What is plasma stability?

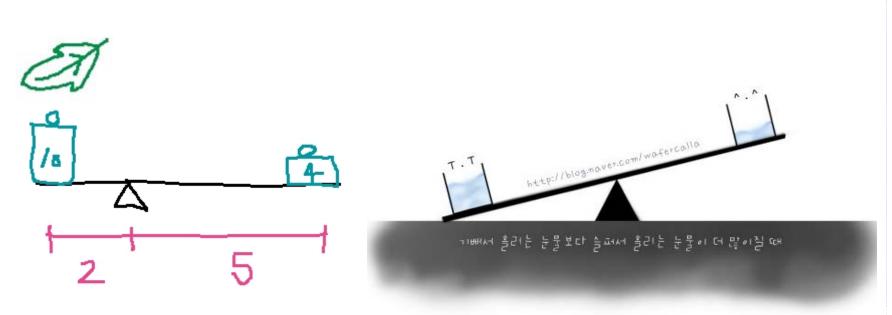
Equilibrium and Stability



Equilibrium? Yes! Forces are balanced Stable? No!

http://www.dezinfo.net/foto/12220-kreativ-devida-nicshe-99-foto.html ¹²

Equilibrium and Stability



Equilibrium?Yes! Forces are balancedStable?No! The system cannot recover.

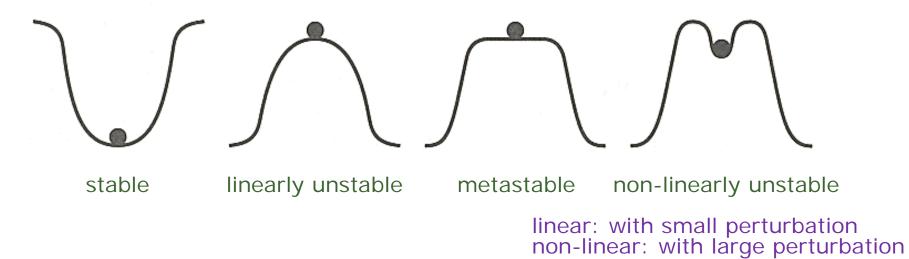
We need a fusion device which confines the plasma particles to some region for a sufficient time period in a stable way.

http://www.amazon.co.uk/11Inch-Latex-Orange-Wedding-Balloons/dp/B004JUQG4Q http://www.psdgraphics.com/backgrounds/blue-water-drop-background/¹⁴

Stability

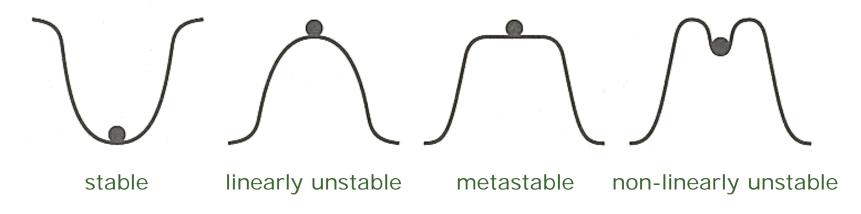
Definition of Stability

- A small change (disturbance) of a physical system at some instant changes the behavior of the system only slightly at all future times *t*.
- The fact that one can find an equilibrium does not guarantee that it is stable. Ball on hill analogies:



- Generation of instability is the general way of redistributing energy which was accumulated in a non-equilibrium state.

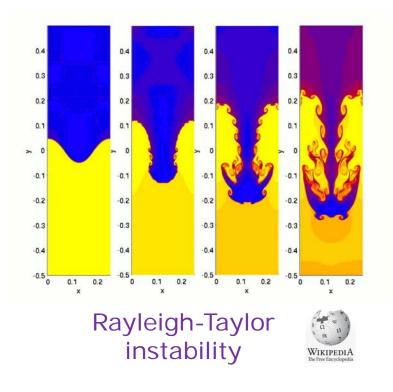
Definition of Stability

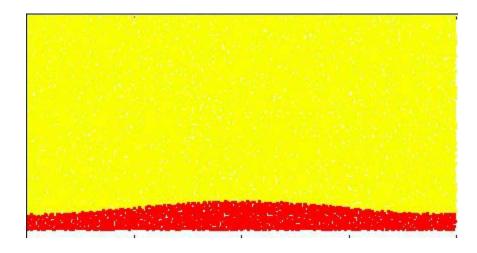


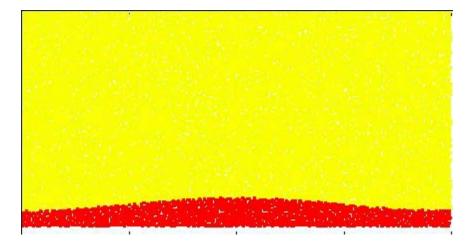
- Assuming all quantities of interest linearised about their equilibrium values. $Q(\vec{r},t) = Q_0(\vec{r}) + \tilde{Q}_1(\vec{r},t) \text{ small 1st order perturbation } \tilde{Q}_1 / |Q_0| << 1$ $\tilde{Q}_1(\vec{r},t) = Q_1(\vec{r})e^{-i\omega t} = Q_1(\vec{r})e^{-i(\omega_r + i\omega_i)t} = Q_1(\vec{r})e^{-i\omega_r t}e^{\omega_i t} \quad \omega = \omega_r + i\omega_i$ $\operatorname{Im} \omega > 0 \ (\omega_i > 0): \text{ exponential instability}$ $\operatorname{Im} \omega \leq 0 \ (\omega_i \leq 0): \text{ exponential stability}$

Stability

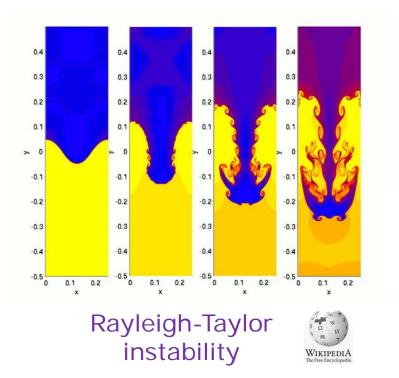
• Gravitational Instability







Stability





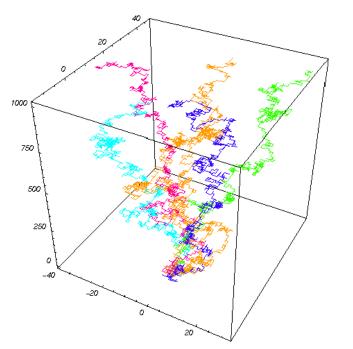
What is plasma transport?

http://www.amazon.co.uk/11Inch-Latex-Orange-Wedding-Balloons/dp/B004JUQG4Q 20

Classical Transport

- Particle transport

random walk: no net flux (zero average) with gradient: net flux down the gradient (diffusion)



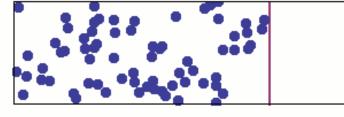
http://functions.wolfram.com/Constants/Pi/visualizations/2/ShowAll.html

Classical Transport

- Particle transport

random walk: no net flux (zero average) with gradient: net flux down the gradient (diffusion)





- Classical Transport
 - Particle transport

Particle flux: $\vec{\Gamma} = n\vec{v}$ [#/m²s] $x \quad x + \Delta x$ $\Gamma_{+} = \frac{n(x)}{2} \frac{\Delta x}{\tau}, \quad \Gamma_{-} = \frac{n(x + \Delta x)}{2} \frac{\Delta x}{\tau}$ $\Gamma = \Gamma_{+} - \Gamma_{-} = \frac{\Delta x}{2\tau} \left[n(x) - n(x + \Delta x) \right] \qquad n(x + \Delta x) \approx n(x) + \Delta x \frac{\partial n}{\partial x}$ $= -\frac{(\Delta x)^2}{2\tau} \frac{\partial n}{\partial x} = -D \frac{\partial n}{\partial x} : \text{Fick's law}$ $D = \frac{(\Delta x)^2}{2}$: diffusion coefficient (m²/s) Adolf Eugen Fick (1829 - 1901)

 $n(x) n(x+\Delta x)$

The heat and momentum fluxes can be estimated in the similar fashion.

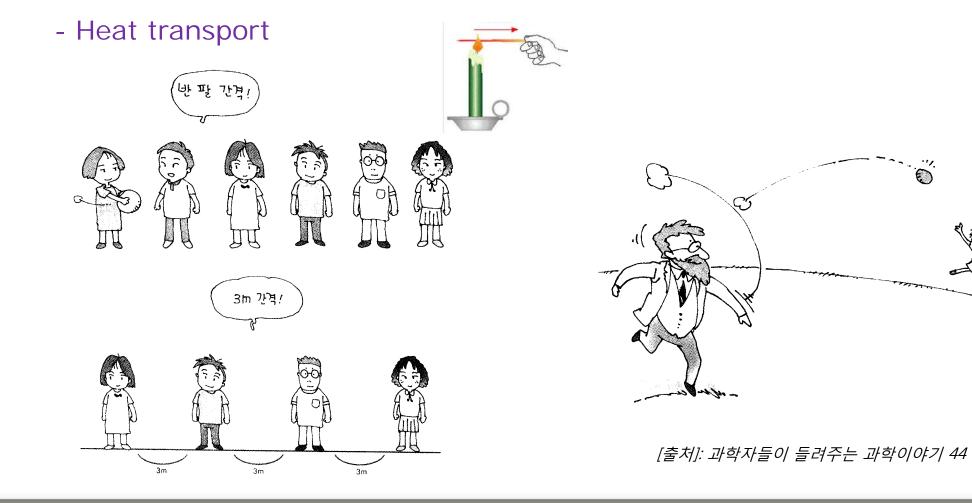
- Classical Transport
 - Heat transport

Heat flux

 $q = -\kappa \frac{\partial T}{\partial x} : \text{Fourier's law}$ $\kappa \sim \frac{n(\Delta x)^2}{\tau} \sim nD : \text{thermal conductivity}$

Jean-Baptiste Joseph Fourier (1768-1830)

Classical Transport



Classical Transport

- Particle transport in weakly ionised plasmas

$$D = \frac{(\Delta x)^2}{2\tau}$$

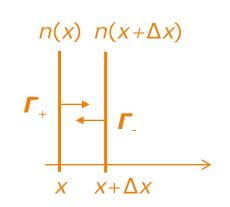
Estimate transport coefficients: Δx from mean free path

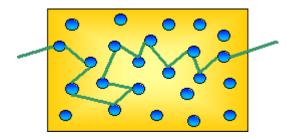
$$\Delta x = \lambda_m = \frac{1}{n_n \sigma}$$

 $d\Gamma = -\sigma n_n \Gamma dx$

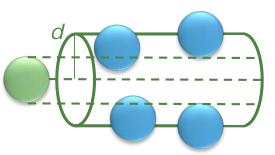
$$\frac{vt}{n_n \pi d^2 vt} = \frac{1}{n_n \pi d^2} = \frac{1}{n_n \sigma} : \text{ particle approach}$$

$$\Gamma = \Gamma_0 e^{-n_n \sigma x} \equiv \Gamma_0 e^{-x/\lambda_m}$$
 : fluid approach



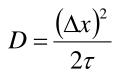


Neutral particles

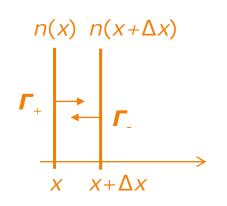


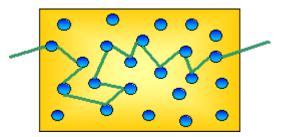
Classical Transport

- Particle transport in weakly ionised plasmas



Estimate transport coefficients: τ from collision frequency with neutrals





Neutral particles

Classical Transport

- Particle transport in weakly ionised plasmas

$$\begin{split} n_{j}m_{j} &\left(\frac{\partial \vec{v}_{j}}{\partial t} + \vec{v}_{j} \cdot \nabla \vec{v}_{j}\right) = nq_{j} \left(\vec{E} + \vec{v}_{j} \times \vec{B}\right) - \nabla p - n_{j}m_{j}v \left(\vec{v}_{j} - \vec{v}_{n}\right) \\ 0 &= nq_{j}\vec{E} - kT_{j}\nabla n_{j} - n_{j}m_{j}v\vec{v}_{j} \\ n_{j}\vec{v}_{j} &= \frac{nq_{j}\vec{E}}{m_{j}v} - \frac{kT_{j}}{m_{j}v}\nabla n_{j} \\ \vec{\Gamma}_{j} &= n_{j}\vec{v}_{j} = \pm \mu_{j}n_{j}\vec{E} - D_{j}\nabla n_{j} \\ \mu &\equiv \frac{|q_{j}|}{m_{j}v} \qquad : \text{ Mobility} \\ D &= \frac{kT_{j}}{m_{j}v} \sim v_{ih}^{2}\tau \sim \frac{\lambda_{m}^{2}}{\tau} \qquad : \text{ Diffusion coefficient} \end{split}$$

Classical Transport

- Particle transport in weakly ionised plasmas
 - Ambipolar Diffusion

Faster electrons \rightarrow Charge separation \rightarrow E-field induction

→ Electrons decelerated, → Electrons and ions
 ions accelerated diffuse together

$$\begin{split} \vec{\Gamma}_i &= \vec{\Gamma}_e \\ \vec{\Gamma} &= -D_a \nabla n \\ D_a &\equiv \frac{\mu_i D_e + \mu_e D_i}{\mu_i + \mu_e} \sim D_i + \frac{T_e}{T_i} D_i \end{split}$$

Classical Transport

- Particle transport in weakly ionised plasmas with magnetic field

 $\vec{\Gamma}_{i} = n_{i}\vec{v}_{i} = \pm \mu_{i}n_{j}\vec{E} - D_{j}\nabla n_{j}$

Without magnetic field With magnetic field Electron Magnetic field line $D = \frac{kT_j}{m_j \nu} \sim v_{th}^2 \tau \sim \frac{\lambda_m^2}{\tau}$

Classical Transport

- Particle transport in fully ionised plasmas with magnetic field

$$\vec{\Gamma}_{\perp} = n\vec{v}_{\perp} = -D_{\perp}\nabla n$$

$$D_{\perp} = \frac{\eta_{\perp}n\sum_{B^{2}}kT}{B^{2}}$$

$$\tau \text{ from collision frequency}$$

$$v_{ee} \approx v_{ei} \propto \frac{ne^{4}}{\sqrt{m_{e}}T_{e}^{3/2}}$$

$$v_{ie} = \left(\frac{m_{e}}{m_{i}}\right)v_{ee}$$

$$v_{ii} = \left(\frac{m_{e}}{m_{i}}\right)^{1/2} \left(\frac{T_{e}}{Ti}\right)^{3/2} v_{ee}$$

В