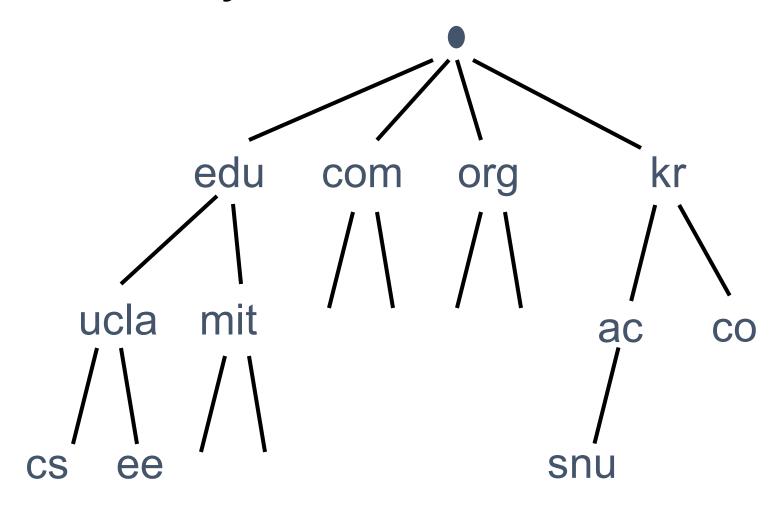
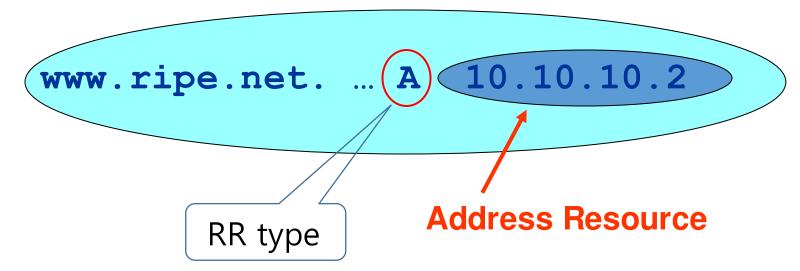
7. DNS/DNSSEC and DANE


DNS/DNSSEC

DNS

domain name system

- provides IP address for a domain name
- a distributed DB


DNS Hierarchy

Concept: Resource Records

• The DNS maps names into data using Resource Records.

Resource Record (RR)

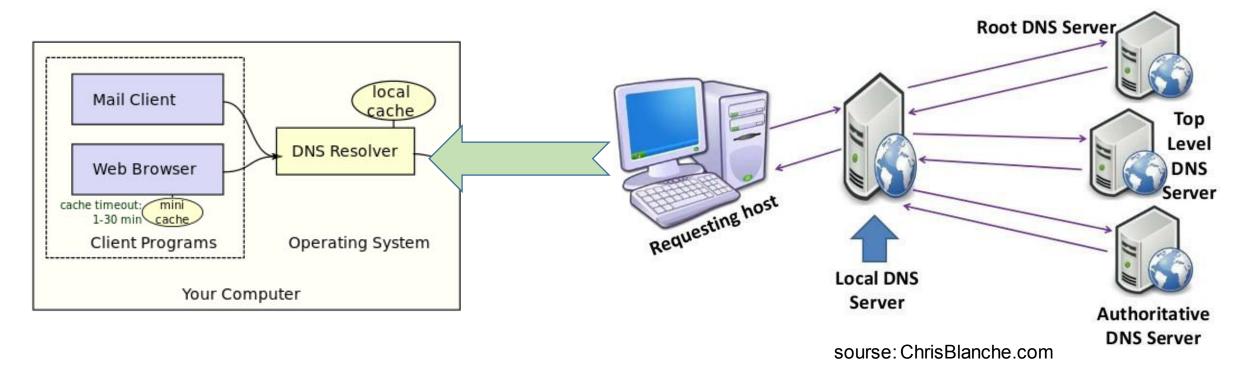
DNS RRs

DNS: a distributed db storing resource records (RRs)

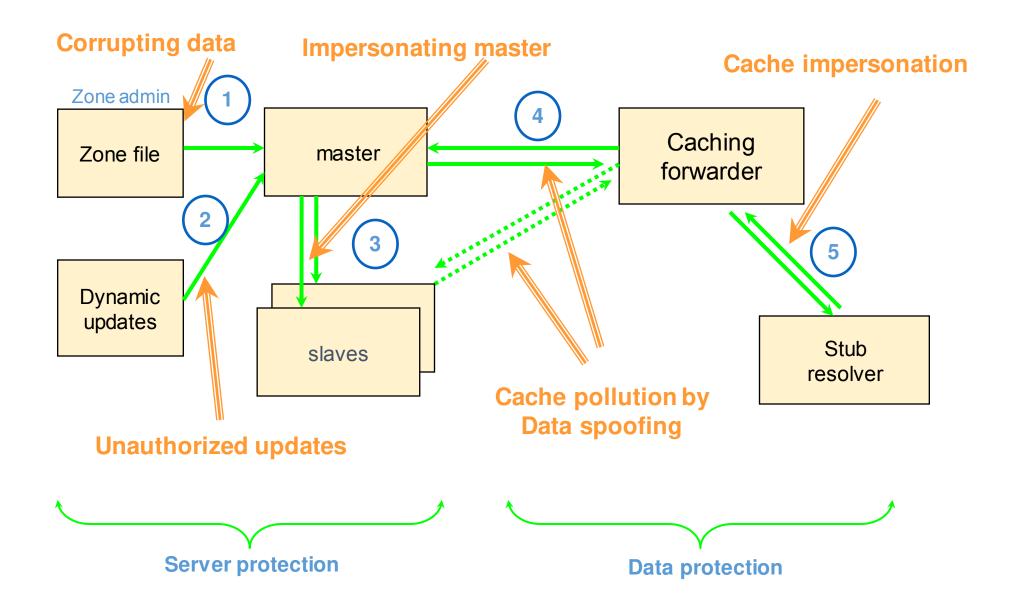
RR format: (name, ttl, class, type, value)

- o Type=A
 - o **name** is hostname
 - o **value** is IP address
 - o AAAA type for IPv6
- o Type=NS
 - o **name** is domain (eg., foo.com)
 - o **value** is hostname of authoritative name server for this domain

- o Type=CNAME
 - o name is alias name for some "canonical" (the real) name, e.g., www.ibm.com is really servereast.backup2.ibm.com
 - o **value** is canonical name
- o *Type=MX*
 - o value is name of
 mailserver associated
 with name


DNS: Stub Resolver vs local DNS server

Stub resolver


- Not interact with the zone hierarchy
- Pose basic queries to recursive servers
- May cache answers
- PC, client applications

local DNS server

- aka DNS forwarder
- caches DNS response
- performs domain name lookup on behalf of client
- is usually located on the local network
- If you use an ISP, your DNS server is at your ISP.

DNS Vulnerabilities

Why DNSSEC: To protect the DNS itself

Current DNS suffers from DNS poisoning and domain hijacking attacks!!

DNSSEC protects against data spoofing and corruption

- DNSSEC also provides mechanisms to authenticate servers
- DNSSEC provides mechanisms to establish authenticity and integrity
- A secure DNS will be used as a PKI
 - However it is NOT a general purpose PKI

DNS RR Review

- DNS Resource Record (RR)
 - Can be viewed as tuples of the form
 <name, TTL, class, type, data>
 - types: A (IP address)

 MX (mail servers)

 NS (name servers)

 PTR (reverse look up)

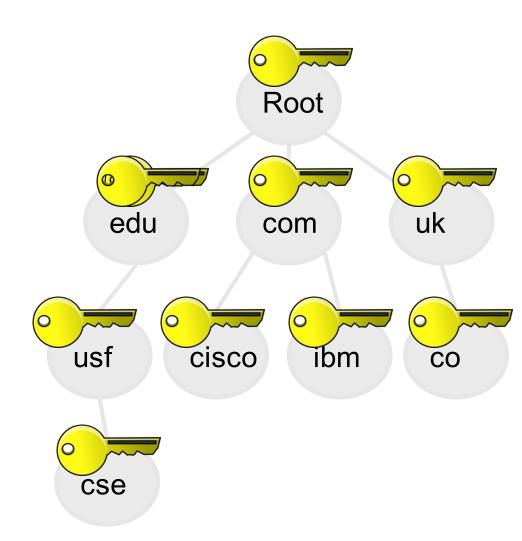
 RRSIG (signature)

 DNSKEY (public key)

 DS (delegated signer)

TLSA (DANE)

Recap: RRs and RRsets

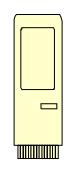

- Resource Record:
 - label class ttl type rdata www.ripe.net IN 7200 A 192.168.10.3
- All RRs of a given label, class, type make up an RRset:

```
www.ripe.net IN 7200 A 192.168.10.3
A 10.0.0.3
```

• In DNSSEC the RRsets are signed, not the individual RRs

DNSSEC

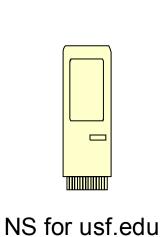
- Provides a "natural" PKI
 - Maps zones to their keys
 - Parent-zone sign child zones' keys
- Keys organized as tree structure.
 - Each zone is the authority for its local data
 - A zone's key is only effective for its zone

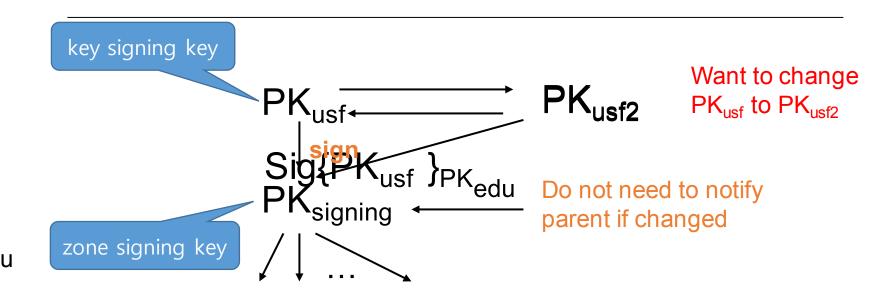


source: Prof. Xinming Ou@USF

Two key pairs for a zone

- Key Signing key (KSK)
 - a long term key
 - to compute a signature on the ZSK to allow it to be validated.
- Zone Signing Key (ZSK)
 - a short term key.
 - to routinely compute signatures for the DNS records
 - ZSK is changed or rolled over frequently
- KSK, in the form of a DS record that is passed up to the "parent" zone. The parent zone signs the DS record of the child with their own ZSK


Key Management



NS for .edu

PK_{edu}

DS Record

DANE

RFC 6698

TLS and PKI

- TLS relies on server certificates
- CA security breach may issue a fraudulent certificate
- DANE allows domain owner to store keys/certificates used by TLS.
 - A new DNS record type: TLSA
 - must be DNSSEC signed
- DANE TLSA records only means that "this domain owner says..."

DANE: DNS-Based Authentication of Named Entities

- enables domain admin to specify/certify the CAs or public keys (or certs)
- RFC 6698, 7671
- TLSA parameters in resource record

TLSA RR parameters

- cert. usage
 - 0: CA cert. or its public key, called CA constraint
 - 1: end entity cert. or its public key, called service cert. constraint
 - 2: trust anchor cert. or its public key
 - 3: domain-issued cert. (not signed by CA)

	+ Acronym +	Short Description	Reference
0	PKIX-TA	CA constraint	[RFC6698]
1	PKIX-EE	Service certificate constraint	[RFC6698]
2	DANE-TA	Trust anchor assertion	[RFC6698]
3	DANE-EE	Domain-issued certificate	[RFC6698]

TLSA RR parameters

- selector: which part of cert will be matched against association data
 - 0: full cert
 - 1: SubjectPublicKeyInfo

Value	Acronym	Short Description	Reference
0		Full certificate SubjectPublicKeyInfo	[RFC6698] [RFC6698]

TLSA RR parameters

- matching type
 - 0: exact match
 - 1: SHA-256 hash
 - 2: SHA-512
- cert. association data
 - raw data or its hash
 - of cert. or of its public key

TLSA RR examples

class type

An example of a hashed (SHA-256) association of a PKIX CA certificate:

name

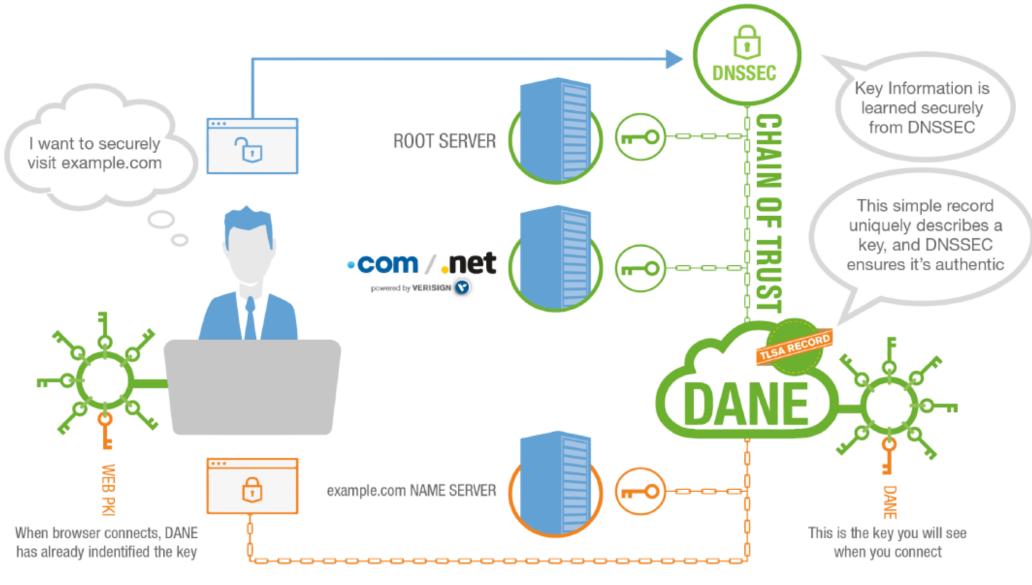
cert association data

parameters

An example of a hashed (SHA-512) subject public key association of a PKIX end entity certificate:

An example of a full certificate association of a PKIX end entity certificate:

```
_443._tcp.www.example.com. IN TLSA (
        3 0 0 30820307308201efa003020102020...)
```


DANE configured browser

- browser queries for TLSA RRs for domain
- DNSSEC required
- compares the cert from TLS (website) and the one from DNS
- connection fails if mismatch

web browsing without DANE ROOT SERVER I want to securely visit example.com •com / •net powered by VERISIGN 😯 DigiNotar? example.com NAME SERVER **CAs TLS**

source: VeriSign

web browsing with DANE

source: VeriSign

DANE: not just for web

- DANE defines how a user verifies the certificate of a domain from DNS
- other uses are possible
 - email (SMTP)
 - VoIP
 - Jabber/XMPP